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Quijote simulations, Release 0.1

The Quijote simulations is a suite of more than 82,000 full N-body simulations designed to:

• Quantify the information content on cosmological observables

• Provide enough statistics to train machine learning algorithms

This video shows how changes in the cosmological parameters values affects the cosmic web:

We have run three simulations: 1) with the fiducial Quijote cosmology (shown on the left), 2) with a low value of
Ωm equal to 0.2 (shown on the right), and 3) with a high value of the Hubble constant ℎ equal to 0.9 (shown on the
top after 1 minutes and 15 seconds). The initial phases of the simulations are all the same, and changes are driven
by the differences in the value of the cosmological parameters. The simulation with high ℎ has been flipped along
the x axis to mimick the effect of a mirror along the middle of the screen. The video illustrates how changes in the
value of the cosmological parameters induce differences in the positions, masses, and internal properties of dark matter
halos. Quijote has been designed to quantify how well can we infer the value of the cosmological parameters given the
statistical properties of the cosmic web.

Historically, Quijote was developed from the HADES simulations. Nowadays, it contains the full HADES data.

QUIJOTE 1

https://franciscovillaescusa.github.io/hades.html


Quijote simulations, Release 0.1

2 QUIJOTE



CHAPTER

ONE

NEWS

January 2024: Data from the Big Sobol Sequence (BSQ), a collection of 32,768 N-body simulations varying 5 cos-
mological parameters (Ωm, Ωb, ℎ, 𝑛𝑠, 𝜎8) is made publicly available. See Big Sobol Sequence for details.

January 2024: Interested in modified gravity? Check Modified Gravity for Quijote-MG, a set of 4,048 N-body simu-
lations with modified gravity.

November 2023: The Sancho suite, a collection of 240,000 galaxy mock catalogs in redshift-space spanning across
11 cosmologies, 3 massive neutrino cosmologies, 6 primordial non-Gaussianity amplitudes, and 11 Halo Occupation
Distribution (HOD) models (together with their corresponding power spectra and bispectra) is now publicly available.
Check Sancho Suite for details.

October 2023: Quijote now contains FoF halo catalogs that include the IDs of the particles belonging to the different
halos. Check Halo catalogs for details.

September 2023: Data from the Ulagam simulations is made publicly available. Check the Ulagam website for details.

July 2023: We release Gigantes: the largest collection of detailed void catalog created to-date. Check the Gigantes
website for details.

July 2023: We have run Rockstar on the Quijote snapshots and all the halo catalogs are publicly available. The rockstar
catalogs are located in the New York cluster. Check Data access for details.

June 2023: We have created a series of tutorial to facilitate the usage of Quijote data. Check out Tutorials for details.

June 2023: We release Quijote-ODD, a collection of 1,000 N-body simulations with parity-violation initial conditions.
We also make publicly available the FoF and Rockstar halo catalogs generated from these simulations. Check Parity-
violation for more details.

March 2023: All data located in the Princeton cluster has been moved to the New York cluster. This means that all
Quijote data is now accessible through binder. The Quijote snapshots have also being compressed by Lehman Garrison.

February 2023: We are moving all data located in Princeton to the cluster in New York. You may find some files
temporarily missing. We are also compressing all Quijote snapshots due to storage limitations. You can still read the
data with Pylians3, but if you are using hdf5 you need to use the hdf5plugin module to deal with the compression. See
Snapshots for more details.

December 2022: We have created 3D matter overdensity grids for all PNG simulations and made them publicly avail-
able. Data can be accessed through Globus and binder.

October 2022: All the halo catalogs of the primordial non-Gaussianities simulations are now publicly available. Check
Primordial non-Gaussianities for more details.

September 2022: All Quijote data located in the San Diego and New York clusters (almost 800 Terabytes) can now
be accessed via Binder, a system that allows reading and manipulating the data without having to download it. Check
Data access for further details.

July 2022: The snapshots of Quijote-PNG are now publicly available. Check Primordial non-Gaussianities for more
details.

3
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June 2022: The nwLH latin-hypercube, containing 2,000 simulations varying Ωm, Ωb, ℎ, 𝑛𝑠, 𝜎8, 𝑀𝜈 , 𝑤 is now
publicly available! Check Latin-hypercubes for more details.

4 Chapter 1. News



CHAPTER

TWO

SCIENCE

The Quijote simulations is a suite of more than 82,000 full N-body simulations that have been designed to accomplish
two main goals:

• Quantify the information content on generic cosmological observables

• Provide enough data to train machine learning algorithms

For the first goal, Quijote provides a set of more than 40,000 simulations designed to calculate the information content
on a generic cosmological observable by means of evaluating its Fisher matrix.

For the second goal, Quijote provides not only thousands of simulations on different latin-hypercubes and Sobol se-
quences, but the a total number of more than 82,000 N-body simulations, with billion of halos, galaxies, voids and
millions of summary statistics such as power spectra, bispectra. . . et, to train machine learning algorithms, where hav-
ing more data is always better.

The large number of simulations and data products available in Quijote allows many other scientific applications. See
Publications for a list of different scientific usages of the data.

5
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CHAPTER

THREE

FEATURES

• Simulations run with the TreePM code Gadget-III

• More than 60 Million CPU hours used

• Boxes of 1 Gpc/h. Combined total volume of more than 82,000 (Gpc/h)^3 at a single redshift

• 17,100 simulations for a fiducial Planck cosmology

• Between 500 and 1,000 simulations/cosmology for more than 30 different cosmologies

• 1,000 Separate Universe simulations

• 4,000 simulations with primordial non-Gaussianities

• 1,000 simulations with parity violation

• 4,048 simulations with modified gravity

• 8,000 simulations in different latin-hypercubes

• 32,768 simulations in a Sobol Sequence

• More than 12 trillions of particles at a single redshift from all simulations

• Billions of halos and voids identified

• Full snapshots at redshifts 0, 0.5, 1, 2, 3 and 127 (initial conditions)

• More than 300,000 halo catalogues

• More than 300,000 void catalogues

• More than 1 million power spectra

• More than 1 million bispectra

• More than 1 million correlation functions

• More than 1 million marked power spectra

• More than 1 million probability distribution functions

• More than 1 Petabyte of data publicly available

• All data can be downloaded via globus

• All data can be accessed and manipulated without downloading it via binder

7
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CHAPTER

FOUR

DATA ACCESS

Quijote contains over 1 petabyte of data. Given this large size, the data is currently distributed across two different
clusters in New York (Rusty cluster) and San Diego (GordonS cluster). The data can be accessed in two different ways:

• Globus. A system designed to easily transfer large amounts of data in a very efficient manner.

• Binder. A system that allows reading and manipulating the data online, without the need to download the data.

The table below describes the data each cluster contains and provides the links to the associated globus and binder
systems.

Warning: We are currently moving all data located in the Princeton cluster to New York. Besides, due to storage
constrains we are compressing all snapshots. Thus, the data may be temporarily unavailable in the below links.
Note that you need to install the latest version of Pylians, or use hdf5plugin to read the compressed snapshots. For
more details see Snapshots. Please Reach out if you experience problems.

Cluster Content Access
San Diego • The snapshots 8,000 - 14,999

of the fiducial cosmology
• The snapshots of the standard

& fixed LH latin hypercube
• All spherical overdensity void

catalogues
• All power spectra
• All bispectra
• All correlation functions
• All pdfs
• 235 Terabytes

globus

New York • The snapshots of all other
simulations

• All halo catalogs (FoF +
Rockstar)

• The 3D density fields
• The HADES data (if avail-

able)
• The 3D density fields
• 700 Terabytes

globus

9
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4.1 Globus

The data can be accessed through globus by clicking in the links from the above table. Note that to download the data
to your local machine (e.g. laptop) you will need to install the globus connect personal. For further details see here.
We now provide some simple instructions to use globus.

The simplest way to transfer data is to use the globus graphical environment. Just type the above names in collection
(e.g. Quijote_simulations for the data in San Diego) or click the associated link. You will need to choose where the
data is being moved in the other collection (e.g. your laptop or another supercomputer). Once the collection points are
set, select the data you want to transfer and destiny folder and click in Start.

In some cases, there are so many files in a given directory, that globus may not be able to list them all and will return
an error. If this is the case, it is advisable to use the path line. For instance, if by clicking in Snapshots you get a
time out error, you may want to just type in the path line: /Snapshots/ or /~/Snapshots/. This may show you the
different content of the data and allow you to navigate it. You can also go to a given directory directly from there. E.g.
to access the first realization of the fiducial cosmology, type in path: /Snapshots/fiducial/0/ or /~/Snapshots/
fiducial/0/.

In some cases, the above option may not be desirable. For instance, imagine that you want to download all linear
matter power spectra of the high-resolution latin-hypercube simulations. One of such files (realization 45) is located in
/Snapshots/latin_hypercube_HR/45/ICs/Pk_mm_z=0.000.txt, while the file for the realization 89 is located
in /Snapshots/latin_hypercube_HR/89/ICs/Pk_mm_z=0.000.txt.

Thus, to download all those files without involving downloading the full HR latin-hypercube folder, will require that
you access each simulation folder, then the ICs folder and then transfer the file individually. For 2,000 files this is
unpractical. For these situations, we recommend using the globus Command Line Interface (CLI). The first step is to
install the CLI package, if you don’t have it. Next, login into globus by typing in a terminal

globus login

Then, the following command allow you to determine the associated endpoint of the Quijote simulations:

10 Chapter 4. Data access

https://www.globus.org/
https://github.com/franciscovillaescusa/Quijote-simulations/blob/master/documentation/globus.md
https://www.globus.org
https://docs.globus.org/cli/


Quijote simulations, Release 0.1

globus endpoint search "Quijote_simulations"

ID | Owner | Display Name
------------------------------------ | ------------------------- | -------------------
c42757fe-d570-11e9-98e2-0a63aa6b37da | fvillaescusa@globusid.org | Quijote_simulations

You should do the same to know the endpoint of the machine where you are transfering the data to. You can then
explore the filesystem of the Quijote simulations (or your machine) as:

ep1=c42757fe-d570-11e9-98e2-0a63aa6b37da
globus ls $ep1:/Snapshots/latin_hypercube_HR/45/ICs/

The above command will list the content in the /Snapshots/latin_hypercube_HR/45/ICs/ directory. A single
file can be transfered as:

ep1=c42757fe-d570-11e9-98e2-0a63aa6b37da
ep2=ddb59af0-6d04-11e5-ba46-22000b92c6ec
globus transfer $ep1:/Snapshots/latin_hypercube_HR/45/ICs/Pk_mm_z=0.000.txt $ep2:/
→˓Quijote_simulations/linear_Pk/45/Pk_mm_z=0.000.txt --label "single file transfer"

Where ep2 should be the endpoint of the machine where you are transfering the data. Entire folders can be moved as
follows:

ep1=c42757fe-d570-11e9-98e2-0a63aa6b37da
ep2=ddb59af0-6d04-11e5-ba46-22000b92c6ec
globus transfer $ep1:/Snapshots/latin_hypercube_HR/45/ICs $ep2:/Quijote_simulations/45/
→˓ICs --recursive --label "single folder transfer"

Many folders can be moved with a single command as

ep1=c42757fe-d570-11e9-98e2-0a63aa6b37da
ep2=ddb59af0-6d04-11e5-ba46-22000b92c6ec
globus transfer $ep1:/Snapshots/fiducial/ $ep2:/Quijote_simulations/fiducial/ --batch --
→˓label "CLI 10 folders" < folders.txt

where folders.txt is a text file containing

--recursive 0 0
--recursive 1 1
--recursive 2 2
--recursive 3 3
--recursive 4 4
--recursive 5 5
--recursive 6 6
--recursive 7 7
--recursive 8 8
--recursive 9 9

For more options and details see Command Line Interface (CLI).

4.1. Globus 11
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4.2 Binder

Binder is a system that allows users to read and manipulate data that is hosted at the Flatiron Institute through either
a Jupyter notebook or a unix shell. The user can find some basic documentation here. The links to the binder for the
New York and San Diego cluster can be found in the table above. Note that the data in the Princeton cluster cannot be
accessed through binder. Our binder environments contains the following packages:

• nbgitpuller

• sphinx-gallery

• pandas

• matplotlib

• astropy

• matplotlib

• scipy

• h5py

• corner

• future

• numba

• unyt

• Pylians

• pyfftw

• CAMELS-library

Note: The first time you log into binder it could take a while. This is because the system is downloading and installing
all required packages. Clicking show you can see the progress.

Warning: Two important things need to be taken into account when using Binder. First, the Binder environment
is ephemeral - after a few days of inactivity its contents are deleted, so one has to be vigilant about downloading
any analysis results in time. Second, Binder is not designed to carry out long and heavy calculations. In this case
we recommend the user to download the data and work with it locally.

12 Chapter 4. Data access
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CHAPTER

FIVE

DATA ORGANIZATION

The Quijote data is organized into different folders:

• Snapshots. This folder contains the snapshots of the simulations

• Halos. This folder contains the halo catalogues (both FoF and Rockstar)

• Voids. This folder contains the void catalogues

• Linear_Pk. This folder contains the linear power spectra of each cosmological model

• Pk. This folder contains the non-linear power spectra

• Marked_Pk. This folder contains the marked power spectra

• Bk. This folder contains the bispectra

• CF. This folder contains the correlation functions

• PDF. This folder contains the pdfs

• 3D_cubes. This folder contains the 3D density fields

Each of the above folders contain several subfolders, that represent the different cosmological models, e.g. h_p,
fiducial, and Om_m. See Structure and types for a description of the different cosmological models and simulations
present in Quijote.

13
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CHAPTER

SIX

TUTORIALS

We provide multiple tutorials showing how to read and manipulate Quijote data. Inside each tutorial there is a link to
open the notebook in our binder, that contains all Quijote data.

6.1 Reading snapshots

[1]: import numpy as np
import readgadget

get the name of the snapshot

[2]: snapshot = '/home/jovyan/Data/Snapshots/Om_p/32/snapdir_004/snap_004'

read the header of the snapshot

[3]: # read header
header = readgadget.header(snapshot)
BoxSize = header.boxsize/1e3 #Mpc/h
Nall = header.nall #Total number of particles
Masses = header.massarr*1e10 #Masses of the particles in Msun/h
Omega_m = header.omega_m #value of Omega_m
Omega_l = header.omega_l #value of Omega_l
h = header.hubble #value of h
redshift = header.redshift #redshift of the snapshot
Hubble = 100.0*np.sqrt(Omega_m*(1.0+redshift)**3+Omega_l)#Value of H(z) in km/s/(Mpc/h)

print('BoxSize = %.3f Mpc/h'%BoxSize)
print('Total number of particles:',Nall)
print('Masses of the particles:',Masses, 'Msun/h')
print('Omega_m = %.3f'%Omega_m)
print('Omega_L = %.3f'%Omega_l)
print('h = %.3f'%h)
print('redshift = %.3f'%redshift)
print('H(z=%.1f)=%.3f (km/s)/(Mpc/h)'%(redshift,Hubble))

BoxSize = 1000.000 Mpc/h
Total number of particles: [ 0 134217728 0 0 0 0]
Masses of the particles: [0.00000000e+00 6.77240019e+11 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00] Msun/h

(continues on next page)
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(continued from previous page)

Omega_m = 0.328
Omega_L = 0.672
h = 0.671
redshift = 0.000
H(z=0.0)=100.000 (km/s)/(Mpc/h)

For N-body simulations, we only care about particle type 1 (and type 2 if neutrinos are included)

[4]: mass_c = Masses[1]
N_c = Nall[1]
print('Mass of a DM particle = %.3e Msun/h'%mass_c)
print('Number of DM particles = %d'%N_c)

Mass of a DM particle = 6.772e+11 Msun/h
Number of DM particles = 134217728

[5]: # we can check the value of Omega_m
rho_crit = 2.775e11 #critical density at z=0 in (Msun/h)/(Mpc/h)^3
estimated_Omega_m = N_c*mass_c/BoxSize**3/rho_crit
print('%.4f should be similar to\n%.4f'%(estimated_Omega_m,Omega_m))

0.3276 should be similar to
0.3275

Now lets read the positions, velocities, and IDs of the DM particles

[6]: ptype = [1] #DM is 1, neutrinos is [2]
pos = readgadget.read_block(snapshot, "POS ", ptype)/1e3 #positions in Mpc/h
vel = readgadget.read_block(snapshot, "VEL ", ptype) #peculiar velocities in km/s
ids = readgadget.read_block(snapshot, "ID ", ptype)-1 #IDs starting from 0

Lets print some information about these quantities

[7]: print('%.3f < X < %.3f Mpc/h'%(np.min(pos[:,0]), np.max(pos[:,0])))
print('%.3f < Y < %.3f Mpc/h'%(np.min(pos[:,1]), np.max(pos[:,1])))
print('%.3f < Z < %.3f Mpc/h'%(np.min(pos[:,2]), np.max(pos[:,2])))
print('%.3f < Vx < %.3f km/s'%(np.min(vel[:,0]), np.max(vel[:,0])))
print('%.3f < Vy < %.3f km/s'%(np.min(vel[:,1]), np.max(vel[:,1])))
print('%.3f < Vz < %.3f km/s'%(np.min(vel[:,2]), np.max(vel[:,2])))
print('%d < IDs < %d'%(np.min(ids), np.max(ids)))

0.000 < X < 999.992 Mpc/h
0.000 < Y < 999.992 Mpc/h
0.000 < Z < 999.992 Mpc/h
-4777.000 < Vx < 5332.000 km/s
-4387.000 < Vy < 4999.000 km/s
-4977.000 < Vz < 4632.000 km/s
0 < IDs < 134217727

You can get the position, velocity, and ID of a particle just by calling its index

[8]: # lets consider the particle number 10
print('position =',pos[10],'Mpc/h')

(continues on next page)

16 Chapter 6. Tutorials



Quijote simulations, Release 0.1

(continued from previous page)

print('velocity =',vel[10],'km/s')
print('ID =',ids[10])

position = [ 9.89725 996.024 15.1425 ] Mpc/h
velocity = [ 356.25 -327.125 -153. ] km/s
ID = 10

The particles IDs can be used to track particles across times. Lets take the particle with ID equal to 623 and find its
position across redshifts

[9]: part_ID = 620
for snapnum in [0,1,2,3,4]:

snapshot = '/home/jovyan/Data/Snapshots/Om_p/32/snapdir_%03d/snap_%03d'%(snapnum,
→˓snapnum)

# read header
header = readgadget.header(snapshot)
redshift = header.redshift #redshift of the snapshot

# read positions and ids
pos = readgadget.read_block(snapshot, "POS ", [1])/1e3 #positions in Mpc/h
ids = readgadget.read_block(snapshot, "ID ", [1])-1 #IDs starting from 0

index = np.where(ids==part_ID)[0]
position = pos[index][0]
print('z=%.1f -----> (X,Y,Z)=(%.2f, %.2f, %.2f) Mpc/h'%(redshift,position[0],

→˓position[1],position[2]))

z=3.0 -----> (X,Y,Z)=(2.14, 16.49, 86.31) Mpc/h
z=2.0 -----> (X,Y,Z)=(2.87, 16.15, 86.48) Mpc/h
z=1.0 -----> (X,Y,Z)=(4.18, 15.80, 86.84) Mpc/h
z=0.5 -----> (X,Y,Z)=(4.97, 15.25, 87.17) Mpc/h
z=0.0 -----> (X,Y,Z)=(6.31, 14.28, 87.94) Mpc/h

Keep in mind the simulations have periodic boundary conditions. For instance, this is the incorrect and correct way to
compute the distance between them

[10]: particle1 = pos[3]
particle2 = pos[4]
print('Position of particle 1: (%.3f, %.3f, %.3f) Mpc/h'%(particle1[0], particle1[1],␣
→˓particle1[2]))
print('Position of particle 2: (%.3f, %.3f, %.3f) Mpc/h'%(particle2[0], particle2[1],␣
→˓particle2[2]))

Position of particle 1: (4.534, 3.950, 998.616) Mpc/h
Position of particle 2: (4.922, 4.519, 2.621) Mpc/h

[11]: # this would be the incorrect way to compute the distance
d = np.sqrt(np.sum((particle1-particle2)**2))
print('Incorrect distance = %.3f Mpc/h'%d)

# this would be the correct way to compute the distance
d = particle1-particle2
indexes = np.where(d>BoxSize/2)

(continues on next page)
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(continued from previous page)

d[indexes]-=BoxSize
indexes = np.where(d<-BoxSize/2)
d[indexes]+=BoxSize
d = np.sqrt(np.sum(d**2))
print('Correct distance = %.3f Mpc/h'%d)

Incorrect distance = 995.995 Mpc/h
Correct distance = 4.064 Mpc/h

In simulations with massive neutrinos, you can read both dark matter and neutrino positions, velocities, and IDs

[12]: # get the name of the snapshot
snapshot = '/home/jovyan/Data/Snapshots/Mnu_p/284/snapdir_002/snap_002'

# read header
header = readgadget.header(snapshot)
BoxSize = header.boxsize/1e3 #Mpc/h
Nall = header.nall #Total number of particles
Masses = header.massarr*1e10 #Masses of the particles in Msun/h
Omega_m = header.omega_m #value of Omega_m
Omega_l = header.omega_l #value of Omega_l
h = header.hubble #value of h
redshift = header.redshift #redshift of the snapshot
Hubble = 100.0*np.sqrt(Omega_m*(1.0+redshift)**3+Omega_l)#Value of H(z) in km/s/(Mpc/h)

print('BoxSize = %.3f Mpc/h'%BoxSize)
print('Total number of particles:',Nall)
print('Masses of the particles:',Masses, 'Msun/h')
print('Omega_m = %.3f'%Omega_m)
print('Omega_L = %.3f'%Omega_l)
print('h = %.3f'%h)
print('redshift = %.3f'%redshift)
print('H(z=%.1f)=%.3f (km/s)/(Mpc/h)'%(redshift,Hubble))

BoxSize = 1000.000 Mpc/h
Total number of particles: [ 0 134217728 134217728 0 0 0]
Masses of the particles: [0.00000000e+00 6.51631041e+11 4.92989376e+09 0.00000000e+00
0.00000000e+00 0.00000000e+00] Msun/h
Omega_m = 0.318
Omega_L = 0.682
h = 0.671
redshift = 1.000
H(z=1.0)=179.513 (km/s)/(Mpc/h)

As can be seeing, particle type 2 (neutrinos) have millions particles and the masses are not zero

[13]: mass_c = Masses[1]
mass_n = Masses[2]
N_c = Nall[1]
N_n = Nall[2]
print('Mass of a DM particle = %.3e Msun/h'%mass_c)
print('Mass of a NU particle = %.3e Msun/h'%mass_n)
print('Number of DM particles = %d'%N_c)

(continues on next page)
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print('Number of NU particles = %d'%N_n)

Omega_m_estimated = (N_c*mass_c + N_n*mass_n)/BoxSize**3/rho_crit
Omega_c_estimated = (N_c*mass_c)/BoxSize**3/rho_crit
Omega_n_estimated = (N_n*mass_n)/BoxSize**3/rho_crit
print('Omega_cb = %.3f'%Omega_c_estimated)
print('Omega_nu = %.3e'%Omega_n_estimated)
print('Omega_m = %.3f'%Omega_m_estimated)

Mass of a DM particle = 6.516e+11 Msun/h
Mass of a NU particle = 4.930e+09 Msun/h
Number of DM particles = 134217728
Number of NU particles = 134217728
Omega_cb = 0.315
Omega_nu = 2.384e-03
Omega_m = 0.318

Now lets read the positions, velocities, and IDs of the dark matter and neutrino particles

[14]: pos_c = readgadget.read_block(snapshot, "POS ", [1])/1e3 #positions in Mpc/h
vel_c = readgadget.read_block(snapshot, "VEL ", [1]) #peculiar velocities in km/s
ids_c = readgadget.read_block(snapshot, "ID ", [1])-1 #IDs starting from 0

pos_n = readgadget.read_block(snapshot, "POS ", [2])/1e3 #positions in Mpc/h
vel_n = readgadget.read_block(snapshot, "VEL ", [2]) #peculiar velocities in km/s
ids_n = readgadget.read_block(snapshot, "ID ", [2])-1 #IDs starting from 0

Lets make a plot with the distribution of the dark matter and neutrino velocities

[15]: # lets compute the modulus of the dark matter and neutrino velocities
Vc = np.sqrt(vel_c[:,0]**2 + vel_c[:,1]**2 + vel_c[:,2]**2)
Vn = np.sqrt(vel_n[:,0]**2 + vel_n[:,1]**2 + vel_n[:,2]**2)
print('%.3f < Vc < %.3f'%(np.min(Vc), np.max(Vc)))
print('%.3f < Vn < %.3f'%(np.min(Vn), np.max(Vn)))

bins_histo = np.logspace(0,5,1000)
histo_Vc, edges = np.histogram(Vc, bins_histo)
histo_Vn, edges = np.histogram(Vn, bins_histo)

0.811 < Vc < 4902.378
13.396 < Vn < 60315.773

As can be seen, neutrinos have, on average, larger velocities than dark matter

[16]: import matplotlib.pyplot as plt
plt.xscale('log')
plt.yscale('log')
plt.xlabel('V')
plt.ylabel('Particle number')
plt.plot(edges[1:], histo_Vc)
plt.plot(edges[1:], histo_Vn)
plt.legend(['Dark matter', 'Neutrinos'])
plt.show()
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6.2 Reading FoF halo catalogs

[1]: import numpy as np
import readgadget
import readfof
import redshift_space_library as RSL

[2]: snapdir = '/home/jovyan/Data/Halos/FoF/EQ_p/420' #folder hosting the catalogue
snapnum = 4 #number of the catalog (4-->z=0, 3-->
→˓z=0.5, 2-->z=1, 1-->z=2, 0-->z=3)

In Quijote, snapnum={4,3,2,1,0} corresponds to redshift {0, 0.5, 1, 2, 3}, but we recommend reading it directly from
the header of the corresponding snapshot. The header of the snapshot also contains information that is needed for some
particular operations such as move halos to redshift-space.

[3]: # get the name of the corresponding snapshot
snapshot = '/home/jovyan/Data/Snapshots/EQ_p/420/snapdir_%03d/snap_%03d'%(snapnum,
→˓snapnum)

# read the redshift, boxsize, cosmology...etc in the header
header = readgadget.header(snapshot)
BoxSize = header.boxsize/1e3 #Mpc/h
Nall = header.nall #Total number of particles
Masses = header.massarr*1e10 #Masses of the particles in Msun/h
Omega_m = header.omega_m #value of Omega_m

(continues on next page)
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Omega_l = header.omega_l #value of Omega_l
h = header.hubble #value of h
redshift = header.redshift #redshift of the snapshot
Hubble = 100.0*np.sqrt(Omega_m*(1.0+redshift)**3+Omega_l)#Value of H(z) in km/s/(Mpc/h)

print('BoxSize = %.3f Mpc/h'%BoxSize)
print('Number of particles in the snapshot:',Nall)
print('Omega_m = %.3f'%Omega_m)
print('Omega_l = %.3f'%Omega_l)
print('h = %.3f'%h)
print('redshift = %.1f'%redshift)

BoxSize = 1000.000 Mpc/h
Number of particles in the snapshot: [ 0 134217728 0 0 0 ␣
→˓ 0]
Omega_m = 0.318
Omega_l = 0.682
h = 0.671
redshift = 0.0

To read the halo catalog we do

[4]: # read the halo catalogue
FoF = readfof.FoF_catalog(snapdir, snapnum, long_ids=False,

swap=False, SFR=False, read_IDs=False)

# get the properties of the halos
pos_h = FoF.GroupPos/1e3 #Halo positions in Mpc/h
vel_h = FoF.GroupVel*(1.0+redshift) #Halo peculiar velocities in km/s
mass_h = FoF.GroupMass*1e10 #Halo masses in Msun/h
Np_h = FoF.GroupLen #Number of CDM particles in the halo. Even in␣
→˓simulations with massive neutrinos, this will be just the number of CDM particles

Lets print some information

[5]: print('%.3f < X_h < %.3f Mpc/h'%(np.min(pos_h[:,0]), np.max(pos_h[:,0])))
print('%.3f < Y_h < %.3f Mpc/h'%(np.min(pos_h[:,1]), np.max(pos_h[:,1])))
print('%.3f < Z_h < %.3f Mpc/h'%(np.min(pos_h[:,2]), np.max(pos_h[:,2])))
print('%.3f < Vx_h < %.3f km/s'%(np.min(vel_h[:,0]), np.max(vel_h[:,0])))
print('%.3f < Vy_h < %.3f km/s'%(np.min(vel_h[:,1]), np.max(vel_h[:,1])))
print('%.3f < Vz_h < %.3f km/s'%(np.min(vel_h[:,2]), np.max(vel_h[:,2])))
print('%.3e < M_h < %.3e Msun/h'%(np.min(mass_h), np.max(mass_h)))
print('%d < Np < %d'%(np.min(Np_h), np.max(Np_h)))

0.003 < X_h < 999.997 Mpc/h
0.004 < Y_h < 999.997 Mpc/h
0.001 < Z_h < 1000.000 Mpc/h
-1920.503 < Vx_h < 2176.723 km/s
-1891.656 < Vy_h < 2023.595 km/s
-1776.037 < Vz_h < 1855.787 km/s
1.313e+13 < M_h < 4.270e+15 Msun/h
20 < Np < 6504

By construction, we only keep halos that contain at least 20 dark matter particles. We can verify that the minimum
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mass of a halo corresponds to that

[6]: Minimum_mass = 20*Masses[1] #This is 20 times the mass of a single DM particle
print('%.3e should be equal to\n%.3e'%(Minimum_mass, np.min(mass_h)))

1.313e+13 should be equal to
1.313e+13

To get the information about a particular halo, just select its index

[7]: index = 45 #the index of the halo
print('Halo position:',pos_h[index],'Mpc/h')
print('Halo velocity:',vel_h[index],'km/s')
print('Halo mass: %.3e Msun/h'%mass_h[index])
print('Number of particles in the halo: %d'%Np_h[index])

Halo position: [557.547 854.5584 387.07922] Mpc/h
Halo velocity: [ 231.89758 -459.18256 655.8717 ] km/s
Halo mass: 1.910e+15 Msun/h
Number of particles in the halo: 2909

In some cases, we may want to work with halos in redshift-space rather than real-space. We can move halos to redshift-
space along a given axis as follows

[8]: # move halos to redshift-space. After this call, pos_h will contain the
# positions of the halos in redshift-space
axis = 0 #axis along which to displace halos
RSL.pos_redshift_space(pos_h, vel_h, BoxSize, Hubble, redshift, axis)

Lets finally compute a simple summary statistics from the catalog: the halo mass function

[9]: min_mass = 2e13 #minimum mass in Msun/h
max_mass = 1e15 #maximum mass in Msun/h
bins = 30 #number of bins in the HMF

# Correct the masses of the FoF halos
mass_h = mass_h*(1.0-Np_h**(-0.6))

bins_mass = np.logspace(np.log10(min_mass), np.log10(max_mass), bins+1)
mass_mean = 10**(0.5*(np.log10(bins_mass[1:])+np.log10(bins_mass[:-1])))
dM = bins_mass[1:] - bins_mass[:-1]

# compute the halo mass function (number of halos per unit volume per unit mass)
HMF = np.histogram(mass_h, bins=bins_mass)[0]/(dM*BoxSize**3)

[10]: import matplotlib.pyplot as plt
plt.xscale('log')
plt.yscale('log')
plt.xlabel(r'$M_{\rm halo}~[h^{-1}M_\odot]$')
plt.ylabel(r'$HMF~[h^4M_\odot^{-1}{\rm Mpc}^{-3}]$')
plt.plot(mass_mean, HMF)
plt.show()
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6.3 Creating density fields

[1]: import numpy as np
import readgadget
import MAS_library as MASL

Define the value of the parameters

[2]: snapshot = '/home/jovyan/Data/Snapshots/fiducial/0/snapdir_004/snap_004' #location of␣
→˓the snapshot
grid = 512 #the density field will have grid^3 voxels
MAS = 'CIC' #Mass-assignment scheme:'NGP', 'CIC', 'TSC', 'PCS'
verbose = True #whether to print information about the progress
ptype = [1] #[1](CDM), [2](neutrinos) or [1,2](CDM+neutrinos)

Read the header and the particle positions

[3]: # read header
header = readgadget.header(snapshot)
BoxSize = header.boxsize/1e3 #Mpc/h
redshift = header.redshift #redshift of the snapshot
Masses = header.massarr*1e10 #Masses of the particles in Msun/h

# read positions, velocities and IDs of the particles
pos = readgadget.read_block(snapshot, "POS ", ptype)/1e3 #positions in Mpc/h

Print some information about the data
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[4]: print('BoxSize: %.3f Mpc/h'%BoxSize)
print('Redshift: %.3f'%redshift)
print('%.3f < X < %.3f'%(np.min(pos[:,0]), np.max(pos[:,0])))
print('%.3f < Y < %.3f'%(np.min(pos[:,1]), np.max(pos[:,1])))
print('%.3f < Z < %.3f'%(np.min(pos[:,2]), np.max(pos[:,2])))

BoxSize: 1000.000 Mpc/h
Redshift: 0.000
0.000 < X < 999.992
0.000 < Y < 999.992
0.000 < Z < 999.992

Define the matrix that will contain the value of the density / overdensity field

[5]: delta = np.zeros((grid,grid,grid), dtype=np.float32)

Now construct the 3D density field

[6]: # construct 3D density field
MASL.MA(pos, delta, BoxSize, MAS, verbose=verbose)

Using CIC mass assignment scheme
Time taken = 6.275 seconds

We can make some tests to make sure the density field has been computed properly

[7]: # the sum of the values in all voxels should be equal to the number of particles
print('%.3f should be equal to\n%.3f'%(np.sum(delta, dtype=np.float64), pos.shape[0]))

134217728.019 should be equal to
134217728.000

As this point, delta contains the effective number of particles in each voxel. If you want instead the effective mass in
each voxel you can just do

[8]: delta *= Masses[1]

# now check that the mass in the density field is equal to the total mass in the␣
→˓simulation
print('%.3e should be equal to\n%.3e'%(np.sum(delta, dtype=np.float64), pos.
→˓shape[0]*Masses[1]))

8.812e+19 should be equal to
8.812e+19

Lets take a slice in the cube and plot it

[9]: # the box is 1000 Mpc/h and every voxel has ~2 Mpc/h size. We can take ~5 slices to␣
→˓consider a region with a ~10 Mpc/h witdh
mean_density = np.mean(delta[:5,:,:],axis=0) #Take the first 5 component along the first␣
→˓axis and compute the mean value
print('Image shape:',mean_density.shape)
print('%.3e < mass < %.3e'%(np.min(mean_density), np.max(mean_density)))

(continues on next page)

24 Chapter 6. Tutorials



Quijote simulations, Release 0.1

(continued from previous page)

# now lets consider the particles in that slide
indexes = np.where((pos[:,0]<10))
pos_slide = pos[indexes]
print('%.3f < X < %.3f'%(np.min(pos_slide[:,0]), np.max(pos_slide[:,0])))
print('%.3f < Y < %.3f'%(np.min(pos_slide[:,1]), np.max(pos_slide[:,1])))
print('%.3f < Z < %.3f'%(np.min(pos_slide[:,2]), np.max(pos_slide[:,2])))

import matplotlib.pyplot as plt
from pylab import *
fig = figure(figsize=(20,10))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
ax2.set_aspect('equal')
ax1.imshow(mean_density.T, cmap='gnuplot',vmin=0.0, vmax=1e13, origin='lower')
ax2.scatter(pos_slide[:,1], pos_slide[:,2], s=0.001,c='r')
plt.show()

Image shape: (512, 512)
0.000e+00 < mass < 1.504e+14
0.000 < X < 10.000
0.000 < Y < 999.992
0.000 < Z < 999.992

nbsphinx-code-borderwhite

If needed, the overdensity is easy to calculate

[10]: # at this point, delta contains the effective number of particles in each voxel
# now compute overdensity and density constrast
delta /= np.mean(delta, dtype=np.float64); delta -= 1.0

print('%.3f < delta < %.3f'%(np.min(delta), np.max(delta)))
print('<delta> = %.3f'%np.mean(delta))
print('shape of the matrix:', delta.shape)
print('density field data type:', delta.dtype)

-1.000 < delta < 1195.511
<delta> = -0.000
shape of the matrix: (512, 512, 512)
density field data type: float32
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6.3.1 Lets now compute density fields in redshift-space

Define the value of the parameters

[11]: import redshift_space_library as RSL

snapshot = '/home/jovyan/Data/Snapshots/Mnu_p/0/snapdir_003/snap_003' #location of the␣
→˓snapshot
grid = 512 #the density field will have grid^3 voxels
MAS = 'CIC' #Mass-assignment scheme:'NGP', 'CIC', 'TSC', 'PCS'
axis = 0 #axis along which to move particles to redshift-space (0-X), (1-Y), (2-
→˓Z)
verbose = True #whether to print information about the progress

Lets read the header and the particle positions and masses (for both dark matter and neutrinos)

[12]: # read header
header = readgadget.header(snapshot)
BoxSize = header.boxsize/1e3 #Mpc/h
Nall = header.nall #Total number of particles
Masses = header.massarr*1e10 #Masses of the particles in Msun/h
Omega_m = header.omega_m #value of Omega_m
Omega_l = header.omega_l #value of Omega_l
h = header.hubble #value of h
redshift = header.redshift #redshift of the snapshot
Hubble = 100.0*np.sqrt(Omega_m*(1.0+redshift)**3+Omega_l)#Value of H(z) in km/s/(Mpc/h)

# read positions and velocities of the particles
pos_c = readgadget.read_block(snapshot, "POS ", [1])/1e3 #positions in Mpc/h
pos_n = readgadget.read_block(snapshot, "POS ", [2])/1e3 #positions in Mpc/h
vel_c = readgadget.read_block(snapshot, "VEL ", [1]) #velocities in km/s
vel_n = readgadget.read_block(snapshot, "VEL ", [2]) #velocities in km/s

Print some information about the data read

[13]: print('BoxSize = %.3f Mpc/h'%BoxSize)
print('Rdshift = %.3f'%redshift)
print('Mass DM = %.3e'%Masses[1])
print('Mass NU = %.3e'%Masses[2])
print('%.3f < X_DM < %.3f'%(np.min(pos_c[:,0]), np.max(pos_c[:,0])))
print('%.3f < Y_DM < %.3f'%(np.min(pos_c[:,1]), np.max(pos_c[:,1])))
print('%.3f < Z_DM < %.3f'%(np.min(pos_c[:,2]), np.max(pos_c[:,2])))
print('%.3f < X_NU < %.3f'%(np.min(pos_n[:,0]), np.max(pos_n[:,0])))
print('%.3f < Y_NU < %.3f'%(np.min(pos_n[:,1]), np.max(pos_n[:,1])))
print('%.3f < Z_NU < %.3f'%(np.min(pos_n[:,2]), np.max(pos_n[:,2])))

BoxSize = 1000.000 Mpc/h
Rdshift = 0.500
Mass DM = 6.516e+11
Mass NU = 4.930e+09
0.000 < X_DM < 999.992
0.000 < Y_DM < 999.992
0.000 < Z_DM < 999.992
0.000 < X_NU < 999.992

(continues on next page)
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0.000 < Y_NU < 999.992
0.000 < Z_NU < 999.992

Now lets move particles to redshift space along the X-axis

[14]: # move dark matter particles to redshift-space
RSL.pos_redshift_space(pos_c, vel_c, BoxSize, Hubble, redshift, axis)

# move neutrino particles to redshift-space
RSL.pos_redshift_space(pos_n, vel_n, BoxSize, Hubble, redshift, axis)

Now construct the density field of matter (DM+NU)

[15]: # define the matrix holding the density field
delta = np.zeros((grid,grid,grid), dtype=np.float32)

# define two arrays with the masses of the DM and NU particles
mass_c = np.ones(pos_c.shape[0], dtype=np.float32)*Masses[1]
mass_n = np.ones(pos_n.shape[0], dtype=np.float32)*Masses[2]

# construct the density field
MASL.MA(pos_c, delta, BoxSize, MAS, W=mass_c, verbose=verbose)
MASL.MA(pos_n, delta, BoxSize, MAS, W=mass_n, verbose=verbose)

Using CIC mass assignment scheme with weights
Time taken = 5.882 seconds

Using CIC mass assignment scheme with weights
Time taken = 26.614 seconds

Make some checks

[16]: # check the total mass in the density field
Mtot1 = np.sum(delta, dtype=np.float64)
Mtot2 = np.sum(mass_c, dtype=np.float64) + np.sum(mass_n, dtype=np.float64)
print('%.3e should be equal to\n%.3e'%(Mtot1,Mtot2))

8.812e+19 should be equal to
8.812e+19

If needed, the overdensity field can be easily computed

[17]: delta /= np.mean(delta, dtype=np.float64); delta -= 1.0
print('%.3f < delta < %.3f'%(np.min(delta), np.max(delta)))
print('<delta> = %.3f'%np.mean(delta))

-1.000 < delta < 98.331
<delta> = 0.000

Lets plot the density field along three different projections to see the effect of the redshift-space distortions
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[18]: df_x = np.mean(delta[:5,:,:]+1,axis=0) #projection into the YZ plane
df_y = np.mean(delta[:,:5,:]+1,axis=1) #projection into the XZ plane
df_z = np.mean(delta[:,:,:5]+1,axis=2) #projection into the XY plane

import matplotlib.pyplot as plt
from pylab import *
fig = figure(figsize=(20,14))
ax1 = fig.add_subplot(231)
ax2 = fig.add_subplot(232)
ax3 = fig.add_subplot(233)
ax4 = fig.add_subplot(234)
ax5 = fig.add_subplot(235)
ax6 = fig.add_subplot(236)
ax1.imshow(df_x.T, cmap='gnuplot',vmin=1, vmax=10, origin='lower')
ax2.imshow(df_y.T, cmap='gnuplot',vmin=1, vmax=10, origin='lower')
ax3.imshow(df_z.T, cmap='gnuplot',vmin=1, vmax=10, origin='lower')
ax4.imshow(df_x[:200,:200].T, cmap='gnuplot',vmin=1, vmax=10, origin='lower')
ax5.imshow(df_y[:200,:200].T, cmap='gnuplot',vmin=1, vmax=10, origin='lower')
ax6.imshow(df_z[:200,:200].T, cmap='gnuplot',vmin=1, vmax=10, origin='lower')
plt.show()
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As can be seen, the images in the middle and right columns are blurrier than the ones of the left column. This is due to
the effects of the redshift-space distortions along that are placed along the X axis.
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6.4 Computing power spectra

[1]: import numpy as np
import readgadget
import readfof
import MAS_library as MASL
import Pk_library as PKL
import redshift_space_library as RSL

We start by computing the matter power spectrum of a snapshot

[2]: snapshot = '/home/jovyan/Data/Snapshots/s8_p/397/snapdir_004/snap_004' #location of the␣
→˓snapshot

# density field parameters
grid = 512 #the density field will have grid^3 voxels
MAS = 'CIC' #Mass-assignment scheme:'NGP', 'CIC', 'TSC', 'PCS'
verbose = True #whether to print information about the progress

# power spectrum parameters
axis = 0 #axis along which redshift-space distortions have been placed. In real-space␣
→˓this parameter doesnt matter
threads = 1 #number of openmp threads to compute the power spectrum

First, lets read the particle positions:

[3]: # read the redshift, boxsize, cosmology...etc in the header
header = readgadget.header(snapshot)
BoxSize = header.boxsize/1e3 #Mpc/h
Nall = header.nall #Total number of particles
Masses = header.massarr*1e10 #Masses of the particles in Msun/h
Omega_m = header.omega_m #value of Omega_m
Omega_l = header.omega_l #value of Omega_l
h = header.hubble #value of h
redshift = header.redshift #redshift of the snapshot
Hubble = 100.0*np.sqrt(Omega_m*(1.0+redshift)**3+Omega_l)#Value of H(z) in km/s/(Mpc/h)

# read positions of the dark matter particles
pos = readgadget.read_block(snapshot, "POS ", [1])/1e3 #positions in Mpc/h

Second, lets compute the density field:

[4]: # define the matrix hosting the density field
delta = np.zeros((grid,grid,grid), dtype=np.float32)

# construct 3D density field
MASL.MA(pos, delta, BoxSize, MAS, verbose=verbose)

# compute the overdensity field
delta /= np.mean(delta, dtype=np.float64); delta -= 1.0

(continues on next page)
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# print some information
print('%.3f < delta < %.3f'%(np.min(delta), np.max(delta)))
print('< delta > = %.3f'%np.mean(delta))

Using CIC mass assignment scheme
Time taken = 5.516 seconds

-1.000 < delta < 1044.773
< delta > = -0.000

Third, compute the power spectrum

[5]: # compute power spectrum
Pk = PKL.Pk(delta, BoxSize, axis, MAS, threads, verbose)

# Pk is a python class containing the 1D, 2D and 3D power spectra, that can be retrieved␣
→˓as

# 1D P(k)
k1D = Pk.k1D
Pk1D = Pk.Pk1D
Nmodes1D = Pk.Nmodes1D

# 2D P(k)
kpar = Pk.kpar
kper = Pk.kper
Pk2D = Pk.Pk2D
Nmodes2D = Pk.Nmodes2D

# 3D P(k)
k = Pk.k3D
Pk0 = Pk.Pk[:,0] #monopole
Pk2 = Pk.Pk[:,1] #quadrupole
Pk4 = Pk.Pk[:,2] #hexadecapole
Pkphase = Pk.Pkphase #power spectrum of the phases
Nmodes = Pk.Nmodes3D

Computing power spectrum of the field...
Time to complete loop = 7.10
Time taken = 12.18 seconds

Lets see how the 3D matter power spectrum looks like:

[6]: import matplotlib.pyplot as plt
plt.xscale('log')
plt.yscale('log')
plt.xlabel(r'$k~[h{\rm Mpc}^{-1}]$')
plt.ylabel(r'$P(k)~[(h^{-1}{\rm Mpc})^3]$')
plt.plot(k, Pk0)
plt.show()
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6.4.1 Now lets compute the power spectrum of halos with masses above 1e14 in
redshift-space

[7]: snapdir = '/home/jovyan/Data/Halos/FoF/s8_p/397/' #folder hosting the catalogue
snapnum = 4 #number of the catalog (4-->z=0, 3-->
→˓z=0.5, 2-->z=1, 1-->z=2, 0-->z=3)

Lets read the halo catalog

[8]: # read the halo catalogue
FoF = readfof.FoF_catalog(snapdir, snapnum, long_ids=False,

swap=False, SFR=False, read_IDs=False)

# get the properties of the halos
pos_h = FoF.GroupPos/1e3 #Halo positions in Mpc/h
vel_h = FoF.GroupVel*(1.0+redshift) #Halo peculiar velocities in km/s
mass_h = FoF.GroupMass*1e10 #Halo masses in Msun/h
Np_h = FoF.GroupLen #Number of CDM particles in the halo. Even in␣
→˓simulations with massive neutrinos, this will be just the number of CDM particles

Lets move halos to redshift-space along the z axis:

[9]: # move halos to redshift-space. After this call, pos_h will contain the
# positions of the halos in redshift-space
axis = 2 #axis along which to displace halos
RSL.pos_redshift_space(pos_h, vel_h, BoxSize, Hubble, redshift, axis)

Lets now select all halos with masses above 1e14 Msun/h
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[10]: indexes = np.where(mass_h>1e14)[0]
pos_h = pos_h[indexes]
vel_h = vel_h[indexes]
mass_h = mass_h[indexes]
Np_h = Np_h[indexes]

print('%.3e < Mass M < %.3e Msun/h'%(np.min(mass_h), np.max(mass_h)))
print('%d halos with masses above 1e14 Msun/h'%pos_h.shape[0])

1.005e+14 < Mass M < 4.589e+15 Msun/h
39096 halos with masses above 1e14 Msun/h

Now lets construct the density field of these halos

[11]: # define the matrix hosting the density field
delta_h = np.zeros((grid,grid,grid), dtype=np.float32)

# construct 3D density field
MASL.MA(pos_h, delta_h, BoxSize, MAS, verbose=verbose)

# compute the overdensity field
delta_h /= np.mean(delta_h, dtype=np.float64); delta_h -= 1.0

# print some information
print('%.3f < delta < %.3f'%(np.min(delta_h), np.max(delta_h)))
print('< delta > = %.3f'%np.mean(delta_h))

Using CIC mass assignment scheme
Time taken = 0.248 seconds

-1.000 < delta < 5290.054
< delta > = 0.000

We can compute the power spectrum now

[12]: # compute power spectrum
axis = 2 #we have placed the redshift-space distortions along the z-axis for the halos
Pk_h = PKL.Pk(delta_h, BoxSize, axis, MAS, threads, verbose)

# Pk is a python class containing the 1D, 2D and 3D power spectra, that can be retrieved␣
→˓as

# 1D P(k)
k1D_h = Pk_h.k1D
Pk1D_h = Pk_h.Pk1D
Nmodes1D_h = Pk_h.Nmodes1D

# 2D P(k)
kpar_h = Pk_h.kpar
kper_h = Pk_h.kper
Pk2D_h = Pk_h.Pk2D
Nmodes2D_h = Pk_h.Nmodes2D

(continues on next page)
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# 3D P(k)
k_h = Pk_h.k3D
Pk0_h = Pk_h.Pk[:,0] #monopole
Pk2_h = Pk_h.Pk[:,1] #quadrupole
Pk4_h = Pk_h.Pk[:,2] #hexadecapole
Pkphase_h = Pk_h.Pkphase #power spectrum of the phases
Nmodes_h = Pk_h.Nmodes3D

Computing power spectrum of the field...
Time to complete loop = 7.12
Time taken = 12.30 seconds

Lets compare ths power spectrum with the one from matter:

[13]: plt.xscale('log')
plt.yscale('log')
plt.xlabel(r'$k~[h{\rm Mpc}^{-1}]$')
plt.ylabel(r'$P(k)~[(h^{-1}{\rm Mpc})^3]$')
plt.plot(k, Pk0)
plt.plot(k_h, Pk0_h)
plt.plot([1e-1,3],[BoxSize**3/pos_h.shape[0], BoxSize**3/pos_h.shape[0]])
plt.legend(['Matter', 'Halos', 'Expected shot-noise'])
plt.show()
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As can be seen, halos are more strongly clustered than matter, as expected as we are taking galaxy clusters with masses
above 1e14 Msun/h. On small scales, the power spectrum of halos saturates at the expected shot-noise level. On the
smallest scales we have, the power spectrum of both halos and matter is affected by aliasing so should not be trusted.
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6.4.2 Finally, lets show an example of how to compute marked power spectra

Our goal is to compute the power spectrum of halos but instead of giving each halo the same weight, we want to weight
each halo by the overdensity of neutrinos from the cosmic neutrino background.

[14]: snapshot = '/home/jovyan/Data/Snapshots/Mnu_ppp/261/snapdir_004/snap_004' #location of␣
→˓the snapshot
snapdir = '/home/jovyan/Data/Halos/FoF/Mnu_ppp/261/' #folder␣
→˓hosting the catalogue
snapnum = 4 #number of the␣
→˓catalog (4-->z=0, 3-->z=0.5, 2-->z=1, 1-->z=2, 0-->z=3)

# read header
header = readgadget.header(snapshot)
BoxSize = header.boxsize/1e3 #Mpc/h
Nall = header.nall #Total number of particles
Masses = header.massarr*1e10 #Masses of the particles in Msun/h
Omega_m = header.omega_m #value of Omega_m
Omega_l = header.omega_l #value of Omega_l
h = header.hubble #value of h
redshift = header.redshift #redshift of the snapshot
Hubble = 100.0*np.sqrt(Omega_m*(1.0+redshift)**3+Omega_l)#Value of H(z) in km/s/(Mpc/h)

# read the neutrino positions
pos_n = readgadget.read_block(snapshot, "POS ", [2])/1e3 #positions in Mpc/h

Now, lets compute the density field of neutrinos

[15]: grid = 512

# define the matrix that will contain the neutrino density field
delta_n = np.zeros((grid,grid,grid), dtype=np.float32)

# compute the neutrino density field
MASL.MA(pos_n, delta_n, BoxSize, MAS, verbose=verbose)

# compute the overdensity field
delta_n /= np.mean(delta_n, dtype=np.float64); delta_n -= 1.0

# print some information
print('%.3f < delta < %.3f'%(np.min(delta_n), np.max(delta_n)))
print('< delta > = %.3f'%np.mean(delta_n))

Using CIC mass assignment scheme
Time taken = 23.728 seconds

-1.000 < delta < 51.771
< delta > = 0.000

Now, lets read the halo catalog

[16]: # read the halo catalogue
FoF = readfof.FoF_catalog(snapdir, snapnum, long_ids=False,

(continues on next page)
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swap=False, SFR=False, read_IDs=False)

# get the properties of the halos
pos_h = FoF.GroupPos/1e3 #Halo positions in Mpc/h
vel_h = FoF.GroupVel*(1.0+redshift) #Halo peculiar velocities in km/s
mass_h = FoF.GroupMass*1e10 #Halo masses in Msun/h
Np_h = FoF.GroupLen #Number of CDM particles in the halo. Even in␣
→˓simulations with massive neutrinos, this will be just the number of CDM particles

We need to compute the overdensity of neutrinos in the location of the dark matter halos. For this we do

[17]: # definte the array hosting the neutrino overdensities
delta_n_h = np.zeros(pos_h.shape[0], dtype=np.float32)

# interpolate to find the neutrino overdensity in the positions of the halos
MASL.CIC_interp(delta_n, BoxSize, pos_h, delta_n_h)

Now, we can construct a density field weigthing each halo by its neutrino overdensity

[18]: # matrix that will host the density field
delta = np.zeros((grid,grid,grid), dtype=np.float32)

# compute the "marked" halo density field
MASL.MA(pos_h, delta, BoxSize, MAS, W=delta_n_h, verbose=verbose)

# print some information about the density field
print('%.3f < delta < %.3f'%(np.min(delta), np.max(delta)))
print('< delta > = %.3f'%np.mean(delta))

Using CIC mass assignment scheme with weights
Time taken = 0.520 seconds

-0.808 < delta < 21.207
< delta > = 0.002

We now compute the power spectrum of this field. This is equivalent to say that we are computing the marked power
spectrum of the halos where the mark is the neutrino overdensity

[19]: # compute power spectrum
axis = 0 #we are working in real-space, so this value doesnt matter
Pk_h = PKL.Pk(delta, BoxSize, axis, MAS, threads, verbose)

# Pk is a python class containing the 1D, 2D and 3D power spectra, that can be retrieved␣
→˓as

# 1D P(k)
k1D_h = Pk_h.k1D
Pk1D_h = Pk_h.Pk1D
Nmodes1D_h = Pk_h.Nmodes1D

# 2D P(k)
kpar_h = Pk_h.kpar

(continues on next page)
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kper_h = Pk_h.kper
Pk2D_h = Pk_h.Pk2D
Nmodes2D_h = Pk_h.Nmodes2D

# 3D P(k)
k_h = Pk_h.k3D
Pk0_h = Pk_h.Pk[:,0] #monopole
Pk2_h = Pk_h.Pk[:,1] #quadrupole
Pk4_h = Pk_h.Pk[:,2] #hexadecapole
Pkphase_h = Pk_h.Pkphase #power spectrum of the phases
Nmodes_h = Pk_h.Nmodes3D

Computing power spectrum of the field...
Time to complete loop = 7.23
Time taken = 12.47 seconds

Now lets see how this marked power spectrum looks like:

[20]: plt.xscale('log')
plt.yscale('log')
plt.xlabel(r'$k~[h{\rm Mpc}^{-1}]$')
plt.ylabel(r'$P(k)~[(h^{-1}{\rm Mpc})^3]$')
plt.plot(k, Pk0_h)
plt.show()
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Pretty weird, right? :)
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CITATION

If you have used data from the Quijote simulations you may consider citing the Quijote paper.

@ARTICLE{Quijote_sims,
author = {{Villaescusa-Navarro}, Francisco and {Hahn}, ChangHoon and {Massara},␣

→˓Elena and {Banerjee}, Arka and {Delgado}, Ana Maria and {Ramanah}, Doogesh Kodi and
→˓{Charnock}, Tom and {Giusarma}, Elena and {Li}, Yin and {Allys}, Erwan and {Brochard},␣
→˓Antoine and {Uhlemann}, Cora and {Chiang}, Chi-Ting and {He}, Siyu and {Pisani}, Alice␣
→˓and {Obuljen}, Andrej and {Feng}, Yu and {Castorina}, Emanuele and {Contardo},␣
→˓Gabriella and {Kreisch}, Christina D. and {Nicola}, Andrina and {Alsing}, Justin and
→˓{Scoccimarro}, Roman and {Verde}, Licia and {Viel}, Matteo and {Ho}, Shirley and
→˓{Mallat}, Stephane and {Wandelt}, Benjamin and {Spergel}, David N.},

title = "{The Quijote Simulations}",
journal = {\apjs},
keywords = {N-body simulations, Cosmological parameters, Astrostatistics, Large-

→˓scale structure of the universe, Cosmological neutrinos, 1083, 339, 1882, 902, 338,␣
→˓Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Instrumentation␣
→˓and Methods for Astrophysics},

year = 2020,
month = sep,
volume = {250},
number = {1},
eid = {2},
pages = {2},
doi = {10.3847/1538-4365/ab9d82},
archivePrefix = {arXiv},
eprint = {1909.05273},
primaryClass = {astro-ph.CO},
adsurl = {https://ui.adsabs.harvard.edu/abs/2020ApJS..250....2V},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}

}

If you use data from Molino, consider citing the Molino paper

@ARTICLE{Molino,
author = {{Hahn}, ChangHoon and {Villaescusa-Navarro}, Francisco},
title = "{Constraining M$_{{\ensuremath{\nu}}}$ with the bispectrum. Part II. The␣

→˓information content of the galaxy bispectrum monopole}",
journal = {\jcap},
keywords = {cosmological parameters from LSS, cosmological simulations, neutrino␣

→˓masses from cosmology, redshift surveys, Astrophysics - Cosmology and Nongalactic␣
→˓Astrophysics},

(continues on next page)
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(continued from previous page)

year = 2021,
month = apr,
volume = {2021},
number = {4},
eid = {029},
pages = {029},
doi = {10.1088/1475-7516/2021/04/029},
archivePrefix = {arXiv},
eprint = {2012.02200},
primaryClass = {astro-ph.CO},
adsurl = {https://ui.adsabs.harvard.edu/abs/2021JCAP...04..029H},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}

}

If you use data from Gigantes, consider citing the Gigantes paper

@ARTICLE{Gigantes,
author = {{Kreisch}, Christina D. and {Pisani}, Alice and {Villaescusa-Navarro},␣

→˓Francisco and {Spergel}, David N. and {Wandelt}, Benjamin D. and {Hamaus}, Nico and
→˓{Bayer}, Adrian E.},

title = "{The GIGANTES dataset: precision cosmology from voids in the machine␣
→˓learning era}",

journal = {arXiv e-prints},
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics -␣

→˓Instrumentation and Methods for Astrophysics},
year = 2021,
month = jul,
eid = {arXiv:2107.02304},
pages = {arXiv:2107.02304},
archivePrefix = {arXiv},
eprint = {2107.02304},
primaryClass = {astro-ph.CO},
adsurl = {https://ui.adsabs.harvard.edu/abs/2021arXiv210702304K},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}

}

If you use data from Quijote-PNG (see Primordial non-Gaussianities), consider citing the Quijote-PNG papers:
2206.01619 and 2206.01624.

@ARTICLE{Quijote-PNG,
author = {{Coulton}, William R and {Villaescusa-Navarro}, Francisco and {Jamieson},␣

→˓Drew and {Baldi}, Marco and {Jung}, Gabriel and {Karagiannis}, Dionysios and {Liguori},
→˓ Michele and {Verde}, Licia and {Wandelt}, Benjamin D.},

title = "{Quijote-PNG: Simulations of primordial non-Gaussianity and the information␣
→˓content of the matter field power spectrum and bispectrum}",

journal = {arXiv e-prints},
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics},
year = 2022,
month = jun,
eid = {arXiv:2206.01619},
pages = {arXiv:2206.01619},
archivePrefix = {arXiv},

(continues on next page)
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eprint = {2206.01619},
primaryClass = {astro-ph.CO},
adsurl = {https://ui.adsabs.harvard.edu/abs/2022arXiv220601619C},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}

}

@ARTICLE{2022ApJ...940...71J,
author = {{Jung}, Gabriel and {Karagiannis}, Dionysios and {Liguori}, Michele and

→˓{Baldi}, Marco and {Coulton}, William R. and {Jamieson}, Drew and {Verde}, Licia and
→˓{Villaescusa-Navarro}, Francisco and {Wandelt}, Benjamin D.},

title = "{Quijote-PNG: Quasi-maximum Likelihood Estimation of Primordial Non-
→˓Gaussianity in the Nonlinear Dark Matter Density Field}",

journal = {\apj},
keywords = {Non-Gaussianity, Cosmological parameters from large-scale structure,␣

→˓Fisher's Information, 1116, 340, 1922, Astrophysics - Cosmology and Nongalactic␣
→˓Astrophysics},

year = 2022,
month = nov,
volume = {940},
number = {1},
eid = {71},
pages = {71},
doi = {10.3847/1538-4357/ac9837},
archivePrefix = {arXiv},
eprint = {2206.01624},
primaryClass = {astro-ph.CO},
adsurl = {https://ui.adsabs.harvard.edu/abs/2022ApJ...940...71J},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}

}

If you use data from Quijote-ODD (see Parity-violation), consider citing the Quijote-ODD paper:

@ARTICLE{Quijote-ODD,
author = {{Coulton}, William R. and {Philcox}, Oliver H.~E. and {Villaescusa-Navarro}

→˓, Francisco},
title = "{Signatures of a Parity-Violating Universe}",
journal = {arXiv e-prints},
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics -␣

→˓Astrophysics of Galaxies, General Relativity and Quantum Cosmology, High Energy␣
→˓Physics - Phenomenology, High Energy Physics - Theory},

year = 2023,
month = jun,
eid = {arXiv:2306.11782},
pages = {arXiv:2306.11782},
doi = {10.48550/arXiv.2306.11782},
archivePrefix = {arXiv},
eprint = {2306.11782},
primaryClass = {astro-ph.CO},
adsurl = {https://ui.adsabs.harvard.edu/abs/2023arXiv230611782C},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}

}
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TEN

STRUCTURE AND TYPES

We now describe the way the Quijote simulations are organized and the different cosmological models present on it.

10.1 Classes and types

The Quijote simulations can be classified into three broad classes:

• Fiducial simulations. Those are simulations with a fiducial cosmology consistent with Planck. They only vary
the initial random seed.

• Individual parameter variations. Those are simulations where the value of a single parameter is varied with
respect to the fiducial simulations. The initial random seed of those simulations are taken to match those of the
fiducial model. Those are designed for Fisher matrix calculations.

• Multiple parameter variations. Those are simulations that vary simultaneously the value of several parameters
and the initial random seed. Those simulations are designed for machine learning applications.

The Quijote simulations can also be classified into different types:

• LCDM. Standard simulations with different values of Ωm, Ωb, ℎ, 𝑛𝑠, 𝜎8. See LCDM for more details.

• Dark Energy. These are simulations were we vary the expansion rate of the Universe through the 𝑤 parameter.
See Dark energy for more details.

• Massive neutrinos. These are simulations that include massive neutrinos as additional particles. See Massive
neutrinos for more details.

• Separate Universe. These simulations incorporate and overall over(under)density or an amplitude of the DC
mode different to zero. See Separate Universe for more details.

• Primordial non-Gaussianities. These simulations include primordial non-Gaussianities of different types. See
Primordial non-Gaussianities for more details.

• Parity violating. These simulations include parity violating features. See Parity-violation for more details.

• Modified gravity. These simulations are run with a modified gravity model: 𝑓(𝑅). See Modified Gravity for
more details.

Note that these types are not exclusive, i.e. there are simulations that vary LCDM parameters plus the dark energy
parameter plus the neutrino masses. The scheme bell shows the different classes of simulations in Quijote:
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A brief description of the different cosmologies is provided in the below table. The standard and paired fixed snapshots
or data products will be located inside the same folder. The paired fixed (or fixed) will be located inside folders starting
with NCV (from No Cosmic Variance). Further details can be found in the Quijote paper and Quijote-PNG paper.

Name Ω𝑚 Ω𝑏 ℎ 𝑛𝑠 𝜎8 𝑀𝜈 𝑤 𝛿𝑏 𝑓 loc
NL 𝑓 equ

NL 𝑓ort1
NL 𝑓ort2

NL 𝑝NL 𝑓𝑅0 realizations simulations ICs 𝑁
1/3
𝑐 𝑁

1/3
𝜈

fiducial 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 0 15,000 standard 2LPT 512 0
fiducial 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 paired fixed 2LPT 512 0
fiducial_ZA 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 standard Zeldovich 512 0
fiducial_LR 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 0 1,000 standard 2LPT 512 0
fiducial_HR 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 0 100 standard 2LPT 1,024 0
Om_p 0.3275 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 standard 2LPT 512 0
Om_p 0.3275 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 paired fixed 2LPT 512 0
Om_m 0.3075 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 standard 2LPT 512 0
Om_m 0.3075 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 paired fixed 2LPT 512 0
Ob2_p 0.3175 0.051 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 standard 2LPT 512 0
Ob2_p 0.3175 0.051 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 paired fixed 2LPT 512 0
Ob2_m 0.3175 0.047 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 standard 2LPT 512 0
Ob2_m 0.3175 0.047 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 paired fixed 2LPT 512 0
Ob_p 0.3175 0.050 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 paired fixed 2LPT 512 0
Ob_m 0.3175 0.048 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 paired fixed 2LPT 512 0
h_p 0.3175 0.049 0.6911 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 standard 2LPT 512 0
h_p 0.3175 0.049 0.6911 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 paired fixed 2LPT 512 0
h_m 0.3175 0.049 0.6511 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 standard 2LPT 512 0
h_m 0.3175 0.049 0.6511 0.9624 0.834 0 -1 0 0 0 0 0 0 0 500 paired fixed 2LPT 512 0
ns_p 0.3175 0.049 0.6711 0.9824 0.834 0 -1 0 0 0 0 0 0 0 500 standard 2LPT 512 0
ns_p 0.3175 0.049 0.6711 0.9824 0.834 0 -1 0 0 0 0 0 0 0 500 paired fixed 2LPT 512 0
ns_m 0.3175 0.049 0.6711 0.9424 0.834 0 -1 0 0 0 0 0 0 0 500 standard 2LPT 512 0

continues on next page
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Table 1 – continued from previous page
Name Ω𝑚 Ω𝑏 ℎ 𝑛𝑠 𝜎8 𝑀𝜈 𝑤 𝛿𝑏 𝑓 loc

NL 𝑓 equ
NL 𝑓ort1

NL 𝑓ort2
NL 𝑝NL 𝑓𝑅0

realizations simulations ICs 𝑁
1/3
𝑐 𝑁

1/3
𝜈

ns_m 0.3175 0.049 0.6711 0.9424 0.834 0 -1 0 0 0 0 0 0 0 500 paired fixed 2LPT 512 0
s8_p 0.3175 0.049 0.6711 0.9624 0.849 0 -1 0 0 0 0 0 0 0 500 standard 2LPT 512 0
s8_p 0.3175 0.049 0.6711 0.9624 0.849 0 -1 0 0 0 0 0 0 0 500 paired fixed 2LPT 512 0
s8_m 0.3175 0.049 0.6711 0.9624 0.819 0 -1 0 0 0 0 0 0 0 500 standard 2LPT 512 0
s8_m 0.3175 0.049 0.6711 0.9624 0.819 0 -1 0 0 0 0 0 0 0 500 paired fixed 2LPT 512 0
Mnu_p 0.3175 0.049 0.6711 0.9624 0.834 0.1 -1 0 0 0 0 0 0 0 500 standard Zeldovich 512 512
Mnu_p 0.3175 0.049 0.6711 0.9624 0.834 0.1 -1 0 0 0 0 0 0 0 500 paired fixed Zeldovich 512 512
Mnu_pp 0.3175 0.049 0.6711 0.9624 0.834 0.2 -1 0 0 0 0 0 0 0 500 standard Zeldovich 512 512
Mnu_pp 0.3175 0.049 0.6711 0.9624 0.834 0.2 -1 0 0 0 0 0 0 0 500 paired fixed Zeldovich 512 512
Mnu_ppp 0.3175 0.049 0.6711 0.9624 0.834 0.4 -1 0 0 0 0 0 0 0 500 standard Zeldovich 512 512
Mnu_ppp 0.3175 0.049 0.6711 0.9624 0.834 0.4 -1 0 0 0 0 0 0 0 500 paired fixed Zeldovich 512 512
w_p 0.3175 0.049 0.6711 0.9624 0.834 0 -1.05 0 0 0 0 0 0 0 500 standard Zeldovich 512 0
w_m 0.3175 0.049 0.6711 0.9624 0.834 0 -0.95 0 0 0 0 0 0 0 500 standard Zeldovich 512 0
DC_p 0.3175 0.049 0.6711 0.9624 0.834 0 -1 +0.035 0 0 0 0 0 0 500 standard Zeldovich 512 0
DC_m 0.3175 0.049 0.6711 0.9624 0.834 0 -1 -0.035 0 0 0 0 0 0 500 standard Zeldovich 512 0
LC_p 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 +100 0 0 0 0 0 500 standard 2LPT 512 0
LC_m 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 -100 0 0 0 0 0 500 standard 2LPT 512 0
EQ_p 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 +100 0 0 0 0 500 standard 2LPT 512 0
EQ_m 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 -100 0 0 0 0 500 standard 2LPT 512 0
OR_CMB_p 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 +100 0 0 0 500 standard 2LPT 512 0
OR_CMB_m 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 -100 0 0 0 500 standard 2LPT 512 0
OR_LSS_p 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 +100 0 0 500 standard 2LPT 512 0
OR_LSS_m 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 -100 0 0 500 standard 2LPT 512 0
ODD_p 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 +1e6 0 500 standard 2LPT 512 0
ODD_m 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 -1e6 0 500 standard 2LPT 512 0
fR_p 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 -5e-7 500 standard Zeldovich 512 0
fR_pp 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 -5e-6 500 standard Zeldovich 512 0
fR_ppp 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 -5e-5 500 standard Zeldovich 512 0
fR_pppp 0.3175 0.049 0.6711 0.9624 0.834 0 -1 0 0 0 0 0 0 -5e-4 500 standard Zeldovich 512 0
latin_hypercube [0.1 - 0.5] [0.03 - 0.07] [0.5 - 0.9] [0.8 - 1.2] [0.6 - 1.0] 0 -1 0 0 0 0 0 0 0 2,000 standard 2LPT 512 0
latin_hypercube [0.1 - 0.5] [0.03 - 0.07] [0.5 - 0.9] [0.8 - 1.2] [0.6 - 1.0] 0 -1 0 0 0 0 0 0 0 2,000 standard 2LPT 512 0
latin_hypercube [0.1 - 0.5] [0.03 - 0.07] [0.5 - 0.9] [0.8 - 1.2] [0.6 - 1.0] 0 -1 0 0 0 0 0 0 0 2,000 standard 2LPT 1,024 0
nwLH [0.1 - 0.5] [0.03 - 0.07] [0.5 - 0.9] [0.8 - 1.2] [0.6 - 1.0] [0.01 - 1.0] [-1.3 - -0.7] 0 0 0 0 0 0 0 2,000 standard Zeldovich 512 512
SB7 [0.1 - 0.5] [0.03 - 0.07] [0.5 - 0.9] [0.8 - 1.2] [0.6 - 1.0] [0.01 - 1.0] -1 0 0 0 0 0 0 [ -3e-4 - 0] 2,048 standard Zeldovich 512 512
BSQ [0.1 - 0.5] [0.02 - 0.08] [0.5 - 0.9] [0.8 - 1.2] [0.6 - 1.0] 0 -1 0 0 0 0 0 0 0 32,768 standard 2LPT 512 0

• Simulations with 𝛿𝑏 ̸= 0 correspond to separate universe simulations and therefore have an amplitude of the DC
mode different than 0 (or equivalently, a curvature different than 0). See Separate Universe for further details on
these simulatons.

• Simulations with 𝑓NL ̸= 0 correspond to simulations with primordial non-Gaussianities (Quijote-PNG). See
Primordial non-Gaussianities for further details on these simulations.

• Simulations with 𝑝NL ̸= 0 correspond to simulations with parity-violating initial conditions (Qujjote-ODD). See
Parity-violation for further details on these simulations.

• Simulations with 𝑓𝑅0
̸= 0 correspond to simulations with modified gravity (Quijote-MG). See Modified Gravity

for further details on these simulations.

• Simulations with parameters in brackets correspond to the latin-hypercubes and sobol sequences simulations.
See Latin-hypercubes and Big Sobol Sequence for further details on these simulations.
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CHAPTER

ELEVEN

LCDM

Quijote contains standard N-body simulations varying the five vanilla ΛCDM parameters: Ωm, Ωb, ℎ, 𝑛𝑠, 𝜎8. In these
simulations 𝑤 = −1, 𝑀𝜈 = 0 eV, Ω𝐾 = 0 and the initial conditions are generated with 2LPT.

These simulations include Om_p, Om_m, Ob_p, Ob_m, h_p, h_m, ns_p, ns_m, s8_p, s8_m, Ob2_p, Ob2_m, fidcial,
fiducial_HR, fiducial_LR, fiducial_ZA, and the three standard latin-hypercubes.

Note: The initial conditions of the fiducial_ZA simulations have been generated with the Zel’dovich approximation
and not 2LPT. This is because these simulations are designed to be used with other Zel’dovich generated ICs simulation
such as Mnu_p, Mnu_pp, and Mnu_ppp.

These simulations are designed to explore and quantify the impact of vanilla cosmological parameters of the spatial
distribution of matter, halos, and galaxies.

61



Quijote simulations, Release 0.1

62 Chapter 11. LCDM



CHAPTER

TWELVE

DARK ENERGY

Quijote contains simulations where the dark energy equation of state is 𝑤 = ̸= −1. These are standard N-body simula-
tions run with a different Hubble function,𝐻(𝑧), that contains the changes introduced in the evolution of the background
by the dark energy equation of state.

The initial conditions of these simulations are generated using the Zel’dovich approximation and the inital matter
power spectrum and 𝐻(𝑧) function is computed using reps. The simulations w_p and w_m (designed to compute partial
derivatives for Fisher matrix calculations) together with the nwLH latin-hypercube are examples of simulations where
𝑤 ̸= −1.

These simulations are designed to explore and quantify the impact of the dark energy equation of state on the large-scale
structure of the Universe.
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THIRTEEN

MASSIVE NEUTRINOS

Quijote include N-body simulations that model massive neutrinos. In these simulations, neutrinos as modelled as a
separate cold and pressureless fluid represented by neutrino particles. The main difference between these particles and
those of dark matter is that neutrino particles have thermal velocities that are draw in the initial conditions from the
underlying Fermi-Dirac distribution.

The initial conditions of these simulations are generated using the Zel’dovich approximation taking into account the
scale-dependent growth factor and growth rate induced by neutrinos. For details on this we refer the reader 1605.05283.

Currently, the simulations including massive neutrinos are Mnu_p, Mnu_pp, Mnu_ppp (designed to compute deriva-
tives for Fisher matrix calculations), and the nwLH latin-hypercube (designed for machine learning applications). See
Structure and types for further details.

These simulations are designed to explore and quantify the impact of massive neutrinos on the different elements of
the cosmic web.

65

https://arxiv.org/abs/1605.05283


Quijote simulations, Release 0.1

66 Chapter 13. Massive neutrinos



CHAPTER

FOURTEEN

SEPARATE UNIVERSE

In standard N-body simulations, the mean matter matter density in the box is Ωm𝜌crit(1 + 𝑧)3, where 𝜌crit(𝑧) is the
critical density at redshift 0. In other words, the mean matter overdensity (with respect to the global one), 𝛿𝑏, is zero.
However, in the real Universe, regions of finite volume will exhibit fluctuations around 𝛿𝑏 = 0 due to perturbation
on scales larger than the considered regions. Separate Universe simulations will follow the evolution of dark matter
particles under the influence of an overdensity different to zero; or equivalently under the impact of a fluctuation that
is larger than the size of the box. These simulations will thus have one extra parameter, 𝛿𝑏 that represents the mean
overdensity over the entire box.

The way to incorporate the global overdensity is to change the cosmology of it, introducing curvature. Thus, in these
simulations Ω𝐾 ̸= 1. Currently, the only Quijote simulations with 𝛿𝑏 ̸= 0 are DC_p and DC_m that are designed to
compute partial derivatives to quantify supersample covariance effects. See section 2.3 of the Quijote paper.

These simulation are designed to explore and quatify the impact of super-sample covariance on cosmological ohserv-
ables. Many thanks to Yin Li for setting up the initial conditions and cosmology of these simulations.

67

https://arxiv.org/abs/1909.05273


Quijote simulations, Release 0.1

68 Chapter 14. Separate Universe



CHAPTER

FIFTEEN

PRIMORDIAL NON-GAUSSIANITIES

Quijote contains 4,000 N-body simulations with primordial non-Gaussianities: Quijote-PNG. All these simulations
contain 5123 dark matter particles in a periodic volume of (1 ℎ−1Gpc)3 and share the same cosmology as the fiducial
model: Ωm = 0.3175, Ωb = 0.049, ℎ = 0.6711, 𝑛𝑠 = 0.9624, 𝜎8 = 0.834, 𝑤 = −1, 𝑀𝜈 = 0.0 eV. These are
standard N-body simulations run with initial conditions generated in a particular way.

The video below shows an example of two N-body simulations with Gaussian initial conditions (left) and local primor-
dial non-Gaussianities initial conditions (right). As can be seen, differences are very small even for a value as large as
𝑓NL = 200 as the one we use.

The simulations in Quijote-PNG can be classified into four different sets: 1) local, 2) equilateral, 3) orthogonal CMB,
and 4) orthogonal LSS (see Bispectrum shapes). Each set contains 1,000 simulations: 500 with 𝑓NL = +100 and 500
with 𝑓NL = −100. Quijote-PNG is thus organized into eight different folders, depending on the non-Gaussianity shape
and the value of 𝑓NL:

• LC_p: contains data from 500 simulations with local type and 𝑓NL = +100

• LC_m: contains data from 500 simulations with local type and 𝑓NL = −100

• EQ_p: contains data from 500 simulations with equilateral type and 𝑓NL = +100

• EQ_m: contains data from 500 simulations with equilateral type and 𝑓NL = −100

• OR_CMB_p: contains data from 500 simulations with orthogonal CMB type and 𝑓NL = +100

• OR_CMB_m: contains data from 500 simulations with orthogonal CMB type and 𝑓NL = −100

• OR_LSS_p: contains data from 500 simulations with orthogonal LSS type and 𝑓NL = +100

• OR_LSS_m: contains data from 500 simulations with orthogonal LSS type and 𝑓NL = −100

Each of the above folders contains 500 sub-folders, each of them hosting the result of a different simulation. For
instance, the folder EQ_p/72/ contains the results of the 72th simulation run with 𝑓NL = +100 for the equilateral
shape. Depending on the location, these folder will contain the snapshots, halo catalogues, or other data products.

15.1 Bispectrum shapes

In Quijote-PNG we only consider models that have a primordial bispectrum, defined as

⟨Φ(k1)Φ(k2)Φ(k3)⟩ = (2𝜋)3𝛿(3)(k1 + k2 + k3)𝐵Φ(𝑘1, 𝑘2, 𝑘3) ,

where Φ(k) is the primordial potential. We consider four different shapes for the primordial bispectrum:

1) Local. The local shape can be characterized by

𝐵local
Φ (𝑘1, 𝑘2, 𝑘3) = 2𝑓 local

NL 𝑃Φ(𝑘1)𝑃Φ(𝑘2) + 2 perm.
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2) Equilateral. The equilaterial shape is described by

𝐵equil.
Φ (𝑘1, 𝑘2, 𝑘3) = 6𝑓 equil.

NL

[︁
− 𝑃Φ(𝑘1)𝑃Φ(𝑘2) + 2 perm.

−2 (𝑃Φ(𝑘1)𝑃Φ(𝑘2)𝑃Φ(𝑘3))
2
3 + 𝑃Φ(𝑘1)

1
3𝑃Φ(𝑘2)

2
3𝑃Φ(𝑘3) + 5 perm.

]︁
3) Orthogonal CMB. The orthogonal CMB template is given by

𝐵ortho−CMB
Φ (𝑘1, 𝑘2, 𝑘3) = 6𝑓ortho−CMB

NL

[︁
− 3𝑃Φ(𝑘1)𝑃Φ(𝑘2)

+ 2 perm. − 8 (𝑃Φ(𝑘1)𝑃Φ(𝑘2)𝑃Φ(𝑘3))
2
3 + 3𝑃Φ(𝑘1)

1
3𝑃Φ(𝑘2)

2
3𝑃Φ(𝑘3) + 5 perm.

]︁
4) Orthogonal LSS. The orthogonal LSS template is given by

𝐵ortho−LSS
Φ (𝑘1, 𝑘2, 𝑘3) =

6𝑓ortho−CMB
NL (𝑃Φ(𝑘1)𝑃Φ(𝑘2)𝑃Φ(𝑘3))

2
3

[︃

−
(︂

1 +
9𝑝

27

)︂
𝑘23
𝑘1𝑘2

+ 2 perms +

(︂
1 +

15𝑝

27

)︂
𝑘1
𝑘3

+5 perms −
(︂

2 +
60𝑝

27

)︂
+

𝑝

27

𝑘41
𝑘22𝑘

2
3

+ 2 perms − 20𝑝

27

𝑘1𝑘2
𝑘23

+ 2 perms

−6𝑝

27

𝑘31
𝑘2𝑘23

+ 5 perms +
15𝑝

27

𝑘21
𝑘23

+ 5 perms
]︁

15.2 Initial conditions

The initial conditions of the Quijote-PNG simulations have been generated using a modified version of the code de-
scribed in Scoccimarro et al. 2012. Our modified version of the code is publicly available here.

The initial conditions of a given simulation can be found in a folder called ICs, that contains:

• ics.X. These are the initial conditions that contain the particle positions, velocities, and IDs. These are Gadget
format-II snapshots and can be read as described in Snapshots. X can go from 0 to 127.

• 2LPT.params. This is the parameter file used to generate the initial conditions.

• logIC. The output of the initial conditions generator code.

The value of initial random seed for the simulation 𝑖 is 10 × 𝑖 + 5 (this can be found in the 2LPT.params file) in-
dependently of the shape and 𝑓NL value. For instance, the value of the initial random seed for OR_CMB_p/100 and
OR_CMB_m/100 is 1005. This choice enables the calculation of partial derivatives, needed for Fisher matrix calcula-
tions.

For the details about the linear matter power spectrum used for these simulations see Linear power spectra.
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15.3 Snapshots

We keep snapshots at redshifts 0, 0.5, 1, 2, and 3. The snapshots are saved as HDF5 files, and they can be read in the
standard way (see Snapshots for details on this).

15.4 Halo catalogues

We store Friends-of-Friends (FoF) halo catalogues for each snapshot of each simulation in Quijote-PNG. We refer the
user to Halo catalogs for details on how to read these files.

15.5 Density fields

To facilitate the post-processing of the data we also provide 3D grids containing the overdensity, 𝛿(𝑥) = 𝜌(𝑥)/𝜌− 1,
for each redshift of all PNG simulations. We refer the user to Density fields for details on how to read these files.

15.6 Team

Quijote-PNG was developed in 2022 by:

• William Coulton (CCA, USA)

• Gabriel Jung (Padova, Italy)

• Francisco Villaescusa-Navarro (CCA/Princeton, USA)

• Dionysios Karagiannis (Cape Town, South Africa)

• Drew Jamieson (MPA, Germany)

• Michele Liguori (Padova, Italy)

• Marco Baldi (Bologna, Italy)

• Licia Verde (Barcelona, Spain)

• Benjamin Wandelt (IAP, France)
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CHAPTER

SIXTEEN

PARITY-VIOLATION

Quijote contains N-body simulations whose intial conditions were generated with parity-violation properties: Quijote-
ODD. All these simulations contain 5123 dark matter particles in a periodic volume of (1 ℎ−1Gpc)3 and share the
same cosmology as the fiducial model: Ωm = 0.3175, Ωb = 0.049, ℎ = 0.6711, 𝑛𝑠 = 0.9624, 𝜎8 = 0.834,
𝑤 = −1, 𝑀𝜈 = 0.0 eV. As the Quijote-PNG simulations (see Primordial non-Gaussianities), these are standard
N-body simulations run with initial conditions generated in a particular way.

The video below shows an example of two N-body simulations with Gaussian initial conditions (top-left) and parity-
violating initial conditions (bottom-left). The parity-violating simulation has been flipped along the x-axis to mimick
the effect of a mirror in the center. The panels on the right show the differences between both.

Currently, the simulations in Quijote-ODD can be classified into two sets depending on the sign of 𝑝NL:

• ODD_p: 500 simulations with 𝑝NL = +106.

• ODD_m: 500 simulations with 𝑝NL = −106.

The simulations in the above sets can be directly compared (the share the same underlying Gaussian density field) with
the first 500 simulations of the fiducial model.

16.1 Initial conditions

The initial conditions of the Quijote-ODD simulations have been generated using a modified version of the code de-
scribed in Scoccimarro et al. 2012. Our modified version of the code is publicly available here.

The initial conditions of a given simulation can be found in a folder called ICs, that contains:

• ics.X. These are the initial conditions that contain the particle positions, velocities, and IDs. These are Gadget
format-II snapshots and can be read as described in Snapshots. X can go from 0 to 127.

• 2LPT.params. This is the parameter file used to generate the initial conditions.

• logIC. The output of the initial conditions generator code.

The value of initial random seed for the simulation 𝑖 is 10× 𝑖+ 5 (this can be found in the 2LPT.params file) indepen-
dently of the shape and 𝑓NL value. For instance, the value of the initial random seed for ODD_p/100 and ODD_m/100
is 1005. This choice enables the calculation of partial derivatives, needed for Fisher matrix calculations.
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16.2 Snapshots

We keep snapshots at redshifts 0, and 1. The snapshots are saved as compressed HDF5 files, and they can be read in
the standard way (see Snapshots for details on this).

16.3 Halo catalogs

We store both Friends-of-Friends (FoF) and Rockstar halo catalogs for each snapshot of each simulation in Quijote-
ODD. We refer the user to Halo catalogs for details on how to read the FoF files. The Rockstar catalogs are ASCII files
and the header contains information about the structure of the data.

16.4 Density fields

To facilitate the post-processing of the data we also provide 3D grids containing the overdensity, 𝛿(𝑥) = 𝜌(𝑥)/𝜌− 1,
for each redshift of all PNG simulations. We refer the user to Density fields for details on how to read these files.

16.5 Team

Quijote-ODD was developed in 2023 by:

• William Coulton (CCA, USA)

• Oliver Philcox (Columbia/Simons, USA)

• Francisco Villaescusa-Navarro (Simons/Princeton, USA)
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CHAPTER

SEVENTEEN

MODIFIED GRAVITY

Quijote contains N-body simulations with modified gravity: Quijote-MG. The movie below shows one of these simu-
lations together wits ΛCDM counterpart:

If you are interested in using these simulations, please contact us at marco.baldi5@unibo.it or villaes-
cusa.francisco@gmail.com.

17.1 General description

Quijote-MG contains 4,048 N-body simulations run with MG-Gadget and using the Hu & Sawicki f(R) model as the
modified gravity model. Each simulation follows the evolution of 5123 dark matter plus 5123 neutrinos in a periodic
cosmological volume of (1000 Mpc/ℎ)3. The initial conditions have been generated using the Zel’dovich approxi-
mation at 𝑧 = 127 and the simulations have been run with the appropiate Hubble function 𝐻(𝑧). We have saved 5
snapshots, at redshifts 0, 0.5, 1, 2, and 3. For each simulation we have saved FoF catalogs, Rockstar catalogs, and
different power spectra (see below).

The simulations can be classified into two different groups:

• Simulations designed for Fisher matrix calculations

• Simulations designed for machine learning calculations

17.1.1 Simulations for Fisher matrix

For the first category we have 2,000 simulations. In this category there are four different types:

• 500 simulations run with 𝑓𝑅0
= −5 × 10−7

• 500 simulations run with 𝑓𝑅0
= −5 × 10−6

• 500 simulations run with 𝑓𝑅0 = −5 × 10−5

• 500 simulations run with 𝑓𝑅0
= −5 × 10−4

Note: We refer the reader to Structure and types for details on the value of the cosmological parameters, the initial
conditions. . . etc.

These simulations are designed for Fisher matrix calculations, and therefore, they have matching IDs between them-
selves and among other Quijote simulations. We note that to compute generic partial derivatives:

𝜕�⃗�

𝜕𝑓𝑅
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where �⃗� is a generic summary statistics and 𝑓𝑅 is the modified gravity parameter, we can use methods like this:

𝜕�⃗�

𝜕𝑓𝑅
≃

�⃗�(𝑓𝑅 + 𝛿𝑓𝑅) − �⃗�(𝑓𝑅)

𝛿𝑓𝑅

𝜕�⃗�

𝜕𝑓𝑅
≃

−3�⃗�(𝑓𝑅) + 4�⃗�(𝑓𝑅 + 𝛿𝑓𝑅) − �⃗�(𝑓𝑅 + 2𝛿𝑓𝑅)

2𝛿𝑓𝑅

𝜕�⃗�

𝜕𝑓𝑅
≃

−21�⃗�(𝑓𝑅) + 32�⃗�(𝑓𝑅 + 𝛿𝑓𝑅) − 12�⃗�(𝑓𝑅 + 2𝛿𝑓𝑅) + �⃗�(4𝛿𝑓𝑅)

12𝛿𝑓𝑅

𝜕�⃗�

𝜕𝑓𝑅
≃

−315�⃗�(𝑓𝑅) + 512�⃗�(𝑓𝑅 + 𝛿𝑓𝑅) − 224�⃗�(𝑓𝑅 + 2𝛿𝑓𝑅) + 28�⃗�(4𝛿𝑓𝑅) − �⃗�(8𝛿𝑓𝑅)

168𝛿𝑓𝑅

where the fiducial value of 𝑓𝑅 is set to zero.

Important: Note that the chosen values of 𝑓𝑅0
are not distributed equally in both linear and log considering that the

fiducial value is 𝑓𝑅0 = 0. Thus, when performing Fisher matrix calculations, we recommend perform the following
change of variables: 𝑌 = (𝑓𝑅0)log10(2). In that way, the values of 𝑓𝑅0 equal to 0, −5× 10−7, −5× 10−6, −5× 10−5,
−5 × 10−4, map to 𝑌 equal to 0, -0.0127, -0.0254, -0.0507, -0.101, and the above formulae can easily be used to
evaluate 𝜕�⃗�/𝜕𝑌 .

17.1.2 Simulations for machine learning

In this category we have 2,048 simulations. Each simulation has a different value of the initial random seed and of the
parameters Ωm, Ωb, ℎ, 𝑛𝑠, 𝜎8, 𝑀𝜈 , 𝑓𝑅0. The value of those parameters in the simulations are organized in a Sobol
sequence with boundaries:

0.1 ≤ Ωm ≤
0.5

0.03 ≤ Ωb ≤
0.07

0.5 ≤ ℎ ≤
0.9

0.8 ≤ 𝑛𝑠 ≤
1.2

0.6 ≤ 𝜎8 ≤
1.0

0.01 ≤ 𝑀𝜈 [eV] ≤
1.0

−3 × 10−4 ≤ 𝑓𝑅0 ≤
0
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Note: The actual value of these parameters for the different simulations can be found here.

17.2 Organization

The data is split into different folders:

• Snapshots. This folder contains 2,048 subfolders, one for each simulation. Inside these subfolders, the user can
find the initial conditions, snapshots, simulation parameters, and additional files produced by MG-Gadget.

• Halos. This folder contains 2 folders: FoF and Rockstar. Each of those folders contains 2,048 folders, inside
which the halo catalogs at different redshifts are located.

• Pk. This folder contains 2,048 subfolders, one for each simulation. Inside these subfolders, the user can find the
different power spectra.

17.3 Snapshots

Every simulation contains 5 snapshots. Each snapshot is stored in a folder called snapdir_00X, where X=0 is 𝑧 = 3,
X=1 is 𝑧 = 2, X=2 is 𝑧 = 1, X=3 is 𝑧 = 0.5, X=4 is 𝑧 = 0. The snapshots are stored in hdf5 format, and can be read
using Pylians (see details in Snapshots). Note that the snapshots have been compressed to save space, so please take a
look at FAQ if you encounter problems reading them.

Note: The initial conditions are located inside a folder called ICs. The initial conditions are also stored as hdf5 files,
and can be read in the same way as the simulation snapshots.

The MG-Gadget snapshots contains more blocks than traditional Gadget N-body simulations. The fields stored in the
snapshots are:

/CompressionInfo
/Header
/PartType1
/PartType1/Acceleration
/PartType1/Coordinates
/PartType1/ModifiedGravityAcceleration Dataset
/PartType1/ModifiedGravityGradPhi Dataset
/PartType1/ModifiedGravityPhi Dataset
/PartType1/ParticleIDs
/PartType1/Velocities
/PartType2
/PartType2/Acceleration
/PartType2/Coordinates
/PartType2/ModifiedGravityAcceleration Dataset
/PartType2/ModifiedGravityGradPhi Dataset
/PartType2/ModifiedGravityPhi Dataset
/PartType2/ParticleIDs
/PartType2/Velocities

where PartType1 represent cold dark matter and PartType2 correspond to neutrinos.

17.2. Organization 77

https://github.com/franciscovillaescusa/Quijote-simulations/blob/master/modified_gravity/Cosmological_parameters.txt


Quijote simulations, Release 0.1

17.4 Halo catalogs

Quijote-MG contains both FoF and Rockstar halo catalogs for every snapshot of each simulation. You can find details
about how to read these files in Halo catalogs.

17.5 Power spectra

For every snapshot of each Quijote-MG simulation we have computed the following power spectra:

• cold dark matter auto-Pk in real-space: Pk_CDM_z=X.XXX.dat

• cold dark matter auto-Pk in redshift-space: Pk_CDM_RS_axis=Y_z=X.XXX.dat

• neutrino auto-Pk in real-space: Pk_NU_z=X.XXX.dat

• neutrino auto-Pk in redshift-space: Pk_NU_RS_axis=Y_z=X.XXX.dat

• total matter auto-Pk in real-space: Pk_CDM+NU_z=X.XXX.dat

• total matter auto-Pk in redshift-space: Pk_CDM+NU_RS_axis=Y_z=X.XXX.dat

• CDM-neutrino cross-Pk in real-space: Pk_CDMNU_z=X.XXX.dat

• CDM-neutrino cross-Pk in redshift-space: Pk_CDMNU_RS_axis=Y_z=X.XXX.dat

Where X.XXX is the redshift and Y (0, 1, or 2) is the axis along which the redshift-space distortions have been placed.

17.6 Bispectra

For every snapshot of each Quijote-MG simulation we have computed the full matter bispectrum. We use a grid with
3843 voxels and we measure the bispectrum in more than 7,000 different triangle configurations. The name of the files
is Bk_m_z=X.X.txt, where X.X represents the redshift.
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EIGHTEEN

LATIN-HYPERCUBES

Quijote provides several latin-hypercubes that can be classified into two main categories depending on whether they
include massive neutrinos:

18.1 LH

The simulations in this category only consider massless neutrinos. There are three latin-hypercubes in this category,
each containing 2,000 simulations that vary the value of Ωm, Ωb, ℎ, 𝑛𝑠, 𝜎8. The limits of the latin-hypercubes are set
by:

Ωm ∈ [0.1; 0.5]

Ωb ∈ [0.03; 0.07]

ℎ ∈ [0.5; 0.9]

𝑛𝑠 ∈ [0.8; 1.2]

𝜎8 ∈ [0.6; 1.0]

The value of the cosmological parameters for each simulation of a latin-hypercube of this category can be found here.
Alternatively, inside each snapshot folder, there is a file called Cosmo_params.dat that contains the value of the
cosmological parameters of that simulation. Each simulation of the latin-hypercube has a different value of the initial
random seed. The value of the initial random seed of each simulation is written in the file ICs/2LPT.param inside
each simulation folder.

The differences between the three latin-hypercubes are these:

• standard: This latin-hypercube contains 2,000 standard simulations with 5123 particles each. The snapshots,
halo catalogues. . . etc of this latin-hypercube are located in a folder called latin_hypercube. The folder names
are X, where X goes from 0 to 1999.

• fixed: This latin-hypercube contains 2,000 fixed simulations with 5123 particles each. The snapshots, halo
catalogues. . . etc of this latin-hypercube are located in a folder called latin_hypercube. The folder names are
NCV_X where X goes from 0 to 1999.

• high-resolution. This latin-hypercube contains 2,000 standard simulations with 10243 particles each. The snap-
shots, halo catalogues. . . etc of this latin-hypercube are located in a folder called latin_hypercube_HR. The
folder names are X, where X goes from 0 to 1999.

Note: The simulations in the standard and high-resolution latin-hypercubes share the same initial random seed. E.g.
the simulation 723 of the standard latin-hypercube has the same initial random seed as the simulation 723 of the high-
resolution latin-hypercube. The only difference is the maximum 𝑘 sampled in each.
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18.2 nwLH

The simulations in this category include massive neutrinos. There is one single latin-hypercube in this category, and it
contains 2,000 simulations that vary the value of Ωm, Ωb, ℎ, 𝑛𝑠, 𝜎8, 𝑀𝜈 , and 𝑤. The limits of this latin-hypercube are
set by

Ωm ∈ [0.1; 0.5]

Ωb ∈ [0.03; 0.07]

ℎ ∈ [0.5; 0.9]

𝑛𝑠 ∈ [0.8; 1.2]

𝜎8 ∈ [0.6; 1.0]

𝑀𝜈 ∈ [0.01; 1.0] eV

𝑤 ∈ [−1.3;−0.7]

The value of the cosmological parameters of each simulation of the latin-hypercube can be found here. Alternatively,
inside each snapshot folder, there is a file called Cosmo_params.dat that contains the value of the cosmological
parameters of that simulation. Each simulation of the latin-hypercube has a different value of the initial random seed.
The value of the initial random seed of each simulation is written in the file ICs/NGenIC.param inside each simulation
folder.

Note: Note that the initial conditions of these simulations have been generated using the Zel’dovich approximation,
while the initial conditions of latin-hypercubes that do not include neutrinos were generated using 2LPT.

The snapshots, halo catalogues. . . etc of this latin-hypercube are located in a folder called latin_hypercube_nwLH.
The folder names are X, where X goes from 0 to 1999.
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NINETEEN

BIG SOBOL SEQUENCE

The Big Sobol Sequence (BSQ) is a collection of 32,768 N-body simulations designed for machine learning ap-
plications. Each simulation follows the evolution of 5123 dark matter particles in a periodic comoving volume of
(1000 ℎ−1Mpc)3. Each of these simulations have a different initial random seed and a value of the cosmological
parameters Ωm, Ωb, ℎ, 𝑛𝑠, 𝜎8 that are arranged in a Sobol sequence with boundaries (the value of the cosmological
parameters for each BSQ simulation can be found here):

Ωm ∈ [0.10; 0.50]

Ωb ∈ [0.02; 0.08]

ℎ ∈ [0.50; 0.90]

𝑛𝑠 ∈ [0.80; 1.20]

𝜎8 ∈ [0.60; 1.00]

The value of the other cosmological parameters is the same in all simulations: 𝑀𝜈 = 0.0 eV, 𝑤 = −1, ΩK = 0. The
initial conditions were generated at 𝑧 = 127 using 2LPT, and the simulations have been run using Gadget-III with a
slightly more stringent force accuracy parameters than the other Quijote simulations.

Warning: As of January 7th 2024, 16,384 simulations have been run and are publicly available in both globus and
binder (see Data access). The remaining simulations are being run and they are made publicly available inmediatly.
The expected time to have the full set run is summer 2024.

For each simulation we dump 11 snapshots at redshifts 6, 5, 4, 3, 2, 1.5, 1, 0.7, 0.5, 0.2, and 0. We then post-process
that data and saved halo catalogs, power spectra, bispectra, and density fields. We now describe the different data we
store:

19.1 Snapshots

We have saved full snapshots for the initial conditions (ICs) and at redshifts 1 (snap_006.hdf5) and 0 (snap_010.
hdf5). Note that that snapshots at redshifts 0 and 1 only contain a single file, in contrast with standard Quijote ones
that have 8. This data can be read in the standard way (see Snapshots).
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19.2 Halo catalogs

For each of the 11 snapshots per simulation we have generated both FoF and Rockstar halo catalogs. We have also run
consistent trees on the Rockstar catalogs and we have saved the generated merger tree. For FoF, the convention is this:

• 000: redshift 6

• 001: redshift 5

• 002: redshift 4

• 003: redshift 3

• 004: redshift 2

• 005: redshift 1.5

• 006: redshift 1

• 007: redshift 0.7

• 008: redshift 0.5

• 009: redshift 0.2

• 010: redshift 0

We refer the reader to Halo catalogs for details on how to read these files.

19.3 Power spectra

For each snapshot of each simulation we have computed the matter power spectrum in real- and redshift-space and
saved the results.

19.4 Bispectra

For each snapshot of each simulation we have computed the matter bispectrum in real- and redshift-space and saved
the results. The bispectrum is computed on grids with 2563 voxels and it contains ~2000 triangles down to 𝑘 ∼
0.5 ℎMpc−1.

19.5 Density fields

We have generated density fields with the matter field with 2563 voxels in real- and redshift-space for all 11 available
redshifts. The density fields have been generated using the Cloud-in-Cell (CIC) mass assignments scheme. The files
are stored as hdf5 files, and can be read as this

import numpy as np
import h5py

f = h5py.File('df_m_CIC_z=0.00.hdf5', 'r')
df = f['df'][:] #df contains the number of particles in each voxel
f.close()
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TWENTY

HADES

The HADES simulations were the precursor of Quijote, and they contained around 1,000 N-body and hydrodynamic
simulations run with different neutrino masses. HADES was designed to study neutrino effects of cosmological ob-
servables, while Quijote philosophy is more generic and not just focused on neutrinos.

Quijote now contains all HADES data. The data is however stored on tape, but can be retrieved back and placed in
globus, url, and binder. If you need this please reach out to villaescusa.francisco@gmail.com
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TWENTYONE

ULAGAM SIMULATIONS

The Ulagam simulations are companion runs to Quijote, and in particular, are full-sky lightcone simulations that are
consistent with the Quijote initial conditions. The Ulagam suite has around 4,000 N-body simulations that are primarily
meant for (i) Fisher forecasting of cosmology parameters related to wCDM or to primordial non-gaussianity, and (ii)
estimating covariances for various data vectors. There are 2,000 simulations at fiducial cosmology, and 100 each for
the various +/- parameter values.

For details see the Ulagam website.

Team:

• Dhayaa Anbajagane (Chicago)

• Chihway Chang (Chicago)

• Hayden Lee (Chicago)

• Marco Gatti (Upenn)
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TWENTYTWO

SNAPSHOTS

The snapshots are stored in either Gadget-II format or HDF5. They can be read using the readgadget.py and readsnap.py
scripts. If you have Pylians installed you already have them. The user can find an example on how to read and manipulate
Quijote snapshots in Tutorials.

The snapshots only contain 4 blocks:

• Header: This block contains general information about the snapshot such as redshift, number of particles, box
size, particle masses. . . etc.

• Positions: This block contains the positions of all particles. Stored as 32-floats

• Velocities: This block contains the velocities of all particles. Stored as 32-floats

• IDs: This block contains the IDs of all particles. Stored as 32-integers. (This block may be removed in the future
to reduce the size of the snapshots)

An example on how to read a snapshot is this:

import numpy as np
import readgadget

# input files
snapshot = '/home/fvillaescusa/Quijote/Snapshots/h_p/snapdir_002/snap_002'
ptype = [1] #[1](CDM), [2](neutrinos) or [1,2](CDM+neutrinos)

# read header
header = readgadget.header(snapshot)
BoxSize = header.boxsize/1e3 #Mpc/h
Nall = header.nall #Total number of particles
Masses = header.massarr*1e10 #Masses of the particles in Msun/h
Omega_m = header.omega_m #value of Omega_m
Omega_l = header.omega_l #value of Omega_l
h = header.hubble #value of h
redshift = header.redshift #redshift of the snapshot
Hubble = 100.0*np.sqrt(Omega_m*(1.0+redshift)**3+Omega_l)#Value of H(z) in km/s/(Mpc/h)

# read positions, velocities and IDs of the particles
pos = readgadget.read_block(snapshot, "POS ", ptype)/1e3 #positions in Mpc/h
vel = readgadget.read_block(snapshot, "VEL ", ptype) #peculiar velocities in km/s
ids = readgadget.read_block(snapshot, "ID ", ptype)-1 #IDs starting from 0

In the simulations with massive neutrinos it is possible to read the positions, velocities and IDs of the neutrino particles.
Notice that the field should contain exactly 4 characters, that can be blank: "POS ", "VEL ", "ID ". The number in
the name of the snapshot represents its redshift:
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• 000 ——> z=3

• 001 ——> z=2

• 002 ——> z=1

• 003 ——> z=0.5

• 004 ——> z=0

Warning: In February 2023 we compressed the Qujote snapshots due to storage limitations. While the format is
exactly the same, you may enconter problems reading them if you don’t use Pylians. In order to read them you will
need both hdf5 and hdf5plugin.

For instance, if you are reading the snapshots using h5py directly, you will need to install hdf5plugin, python -m
pip install hdf5plugin, and then import both h5py and hdf5plugin

import h5py
import hdf5plugin

Reach out if you experience problems.

22.1 Initial conditions

On top of the snapshots at redshifts 0, 0.5, 1, 2, and 3, we also provide the initial conditions for each simulation. Those
can be stored as hdf5 files or as Gadget format I files. In both cases, you can read the positions, velocities, and IDs of
the particles using the above example just using as snapshot the name of the initial conditions, for instance:

snapshot = '/home/fvillaescusa/Quijote/Snapshots/w_p/ICs/ics'

If you want to use the linear matter power spectrum used to create the initial conditions, take a look at Linear power
spectra.

Note: We note that the particle IDs are unique across snapshots. For instance, particles with an ID equal to 43623
at redshifts 0, 0.5, and 127 represent the very same particle at different times. This can be used to track particles
back/forward in time; for instance, can be used to identify the Lagrangian region of a halo or a void.

22.2 Compression

The particle positions, velocities, and PID, are stored in HDF5 files, using HDF5 compression filters to reduce the disk
usage. Specifically, the files use the Blosc compression filter, as implemented in the hdf5plugin Python package. Blosc
compression applies a transpose to the data then passes it to zstandard, all of which is lossless and transparent to the
user. As a preconditioning step to increase the Blosc compression ratio, we manually null out some bits of the positions
and velocities to increase the compression ratio. This step is lossy. The typical total compression ratio is 2.5x.

The positions are stored as absolute coordinates in float32 precision. The lossy preconditioning we apply is to set several
of the low bits in the float32 significand to zero. The number of bits nulled out is B=6 for the 1024^3 simulations,
B=7 for 512^3, and B=8 for 256^3. This introduces a fractional error of 2^(-24+B), which is 3.8e-6 for the 1024^3
simulations. Since these are 1 Gpc/h simulations, this is 3.8 kpc/h precision worst-case. The softening length in all
cases is 1/40th of the interparticle spacing, or 24.4 kpc/h for 1024^3. Therefore, the lossiness is 6.4x smaller than the
softening length and should have a minimal impact on science analyses.
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Likewise, we null out 11 low bits of the velocities, for a fractional precision of 0.01%. The velocity rarely goes above
6000 km/s in LCDM simulations, so this is a worst case of 0.6 km/s precision.

No lossy compression is applied to the IC files, or to the PIDs.

Each HDF5 file also has a new group called /CompressionInfo whose attributes contain a JSON string describing
the exact compression options used.

The scripts used to do the compression are here: https://github.com/lgarrison/quijote-compression

Check FAQ if you are having problems reading the snapshots.
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TWENTYTHREE

HALO CATALOGS

Quijote contains FoF and Rockstar halo catalogs. The Halo folder contains three folders:

23.1 FoF

The FoF halo catalogs can be read through the readfof.py script. If you have Pylians installed you already have it. An
example on how to read a halo catalog is this (we provide further details on how to read and manipulate these catalogs
in Tutorials):

import readfof

# input files
snapdir = '/home/fvillaescusa/Quijote/Halos/FoF/s8_p/145/' #folder hosting the catalogue
snapnum = 4 #redshift 0

# determine the redshift of the catalogue
z_dict = {4:0.0, 3:0.5, 2:1.0, 1:2.0, 0:3.0}
redshift = z_dict[snapnum]

# read the halo catalogue
FoF = readfof.FoF_catalog(snapdir, snapnum, long_ids=False,

swap=False, SFR=False, read_IDs=False)

# get the properties of the halos
pos_h = FoF.GroupPos/1e3 #Halo positions in Mpc/h
mass = FoF.GroupMass*1e10 #Halo masses in Msun/h
vel_h = FoF.GroupVel*(1.0+redshift) #Halo peculiar velocities in km/s
Npart = FoF.GroupLen #Number of CDM particles in the halo

The number in the name of the halo catalogue represents its redshift:

• 000 ——> z=3

• 001 ——> z=2

• 002 ——> z=1

• 003 ——> z=0.5

• 004 ——> z=0

Note: The above correspondence applies to the majority of the simulations but not to all of them. For instance, for
Quijote-ODD, 000 represents redshift 1 while 001 corresponds to redshift 0. Thus, we always recommend reading the
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redshift of the correspond snapshot.

23.2 FoF_id

This folder contains FoF halo catalogs. There are two differences with respect to the above FoF folder. First, these
halo catalogs contain the IDs of the particles belonging to the halos and second, it has been run over the compressed
snapshots. Thus, there may be some small (likely negligible) differences among with respect to the halo catalogs in
the FoF folder. For this reason we keep both halo catalogs. These halo catalogs can be read in exactly the same way as
above, but now you can also access the IDs of the particles in a given halo as

import readfof

# input files
snapdir = '/home/fvillaescusa/Quijote/Halos/FoF_id/s8_p/145/' #folder hosting the␣
→˓catalogue
snapnum = 4 #redshift 0

# determine the redshift of the catalogue
z_dict = {4:0.0, 3:0.5, 2:1.0, 1:2.0, 0:3.0}
redshift = z_dict[snapnum]

# read the halo catalogue
FoF = readfof.FoF_catalog(snapdir, snapnum, long_ids=False,

swap=False, SFR=False, read_IDs=True)

# get the properties of the halos
pos_h = FoF.GroupPos/1e3 #Halo positions in Mpc/h
mass = FoF.GroupMass*1e10 #Halo masses in Msun/h
vel_h = FoF.GroupVel*(1.0+redshift) #Halo peculiar velocities in km/s
Npart = FoF.GroupLen #Number of CDM particles in the halo

# get the IDs of the halos
IDs_h = FoF.GroupIDs

# To get the IDs of the particles belong to the first halo one would do
IDs_0 = IDs_h[0:Npart[0]]
pos_0 = pos_h[0]
mass_0 = mass_h[0]

# Similarly, to get the IDs of the particles in the second halo one would do
IDs_1 = IDs_h[Npart[0]:Npart[0]+Npart[1]]
pos_1 = pos_h[1]
mass_1 = mass_h[1]
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23.3 Rockstar

Quijote also contain Rockstar halo catalogs. A typical Rockstar folder will contain the following files:

• out_X.list. These are the Rockstar-generated halo+subhalo catalogs. X usually goes from 0 to 4, and it
represents the snapshot number. E.g. the rockstar catalog corresponding to the snapdir_004 would be out_4.list.
Those are ASCII files where the header describes the content of the file.

• out_X_pid.list. These are the Rockstar-generated halo+subhalo catalogs. X usually goes from 0 to 4, and it
represents the snapshot number. E.g. the rockstar catalog corresponding to the snapdir_004 would be out_4.list.
Those are ASCII files where the header describes the content of the file. The main difference between these files
and the out_X.list is that out_X_pid.list contains an additional column called PID that allow to distinguish
between halos and halos. For halos PID = −1 while for subhalos PID is the parent halo ID.

• rockstar_params.cfg. This file contains the Rockstar parameter file.

• rockstar.slurm. This file contains the slurm submission script used to run Rockstar.

• rockstar.slurm. This file contains the output from the slurm script.

• rockstar.cfg. The Rockstar-generated configuration file. This is generated by Rockstar when running it.

• output.dat. The output generated by Rockstar when running it.

In general, we recommend using the out_X_pid.list files that can be read easily with something like this:

import numpy as np

# catalog file
f_catalog = '/home/fvillaescusa/Quijote/Halos/fiducial/0/out_4_pid.list'

# read the halo catalog
data = np.loadtxt('f_catalog')

# we can now get the different properties of the halos
Mvir = data[:,2]
Vmax = data[:,3]
PID = data[:,41]

Important: In some cases, like in the BSQ simulations, there are some additional folders, like hlists and trees.
These folders contains the halo/subhalo catalogs and merger trees generated after running consistent trees. We note
that consistent trees needs multiple snapshots to run, so only some Quijote simulations have these folders. In the case
these folders exists, we recommend the user to use them. E.g. it is better to read the hlist/hlist_1.00000.list
file than the out_4_pid.list as the former contains more information.
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CHAPTER

TWENTYFOUR

GALAXY CATALOGS

ChangHoon Hahn has created a set of tens of thousands of galaxy catalogues from the Quijote simulations called the
Molino catalogues.

You can find all the information and how to access this data here.
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TWENTYFIVE

SANCHO SUITE

The Sancho Suite of galaxy mock catalogs consist of 240, 000 galaxy catalogs in redshift-space scanning across 11
cosmologies, 3 massive neutrino cosmologies, 6 non-Gaussian initial conditions and 11 Halo Occupation Distribution
(HOD) model parameters. The average number density of each box is 𝑛𝑔 ∼ 3 × 10−4 (ℎ/Gpc) at 𝑧 = 0.5 and they
are generated from the halo catalogs of Quijote simulations, each run with 5123 particles on a 1 (Gpc/ℎ)3 box. The
fiducial HOD model is tailored such that the catalogs mock the CMASS galaxies observed by BOSS.
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25.1 Organization

The Sancho catalogs are organized in the following way:

• 15, 000 mocks at the fiducial cosmological and HOD parameter values.

• 172, 500 mocks at 23 different cosmological/HOD parameter values and 45, 000 mocks at different amplitudes
of different types of non-Gaussian initial conditions. For each cosmology and HOD set of values, there are 500
N-body realizations and, for each of these, 5 realizations of the HOD are run, making a total of 2500 mocks.

• Redshift space displacements are computed in the distant observer approximation along each of the axes. There
are three different files for each realization/redshift.

25.2 Cosmologies and HOD implementation

We vary 5 cosmological parameters, Ω𝑚, Ω𝑏, ℎ, 𝑛𝑠 and 𝜎8 plus the sum of massive neutrinos
∑︀

𝑚𝜈 and 3 different
types of primordial non-Gaussianities, 𝑓 local

NL , 𝑓 equil
NL and 𝑓 equil

NL , following the same naming and step convention as the
rest of the Quijote suite.

The HOD model adopted is as described in Zheng et al and it consists of 5 parameters:

• 𝑀min is the lowest mass of a halo that can host any galaxy

• 𝜎log𝑀 regulates the central galaxy occupation, which is modeled as a Bernoulli distribution

• The satellite galaxy distribution is a Poisson distribution with a mean that depends on three parameters: 𝑀0,
𝑀1, and 𝛼.

> The code implementing this HOD algorithm has been developed by Juan Calles and is freely available here .

We summarize all cosmologies and HOD models in the following table:

Cosmological Parameters HOD parameters
name Ω𝑚 Ω𝑏 ℎ 𝑛𝑠 𝜎8

∑︀
𝑚𝜈 𝑓

local
NL 𝑓 equil

NL 𝑓 ortho
NL log𝑀min𝜎log𝑀 log𝑀0𝛼 log𝑀1 real-

iza-
tions

fidu-
cial

0.31750.049 0.67110.96240.834 0 0 0 0 13.0 0.2 13.1 0.75 14.25 15,000

step 0.01 0.002 0.02 0.02 0.015 * 100 100 100 0.025 0.025 0.2 0.2 0.2 500

* As for the mass of neutrinos, 𝑀𝜈 , there are three steps corresponding to the total mass of neutrinos of
0.1, 0.2, and 0.4 eV.

25.3 Access to data

Sancho can be accessed through the dedicated folder in Globus. Folders are organized in the same way as the rest of
the Quijote suite: /Cosmology/#realization/files

Inside each of these directories you can find the following products:

• Catalogs in Python binary including position, velocity and type (central or galaxy),

• Power spectrum measurements including monopole, quadrupole and hexadecapole (see details in the next sec-
tion),

• Bispectrum measurements, for now monopole only, quadrupole coming soon!
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The file naming for catalogs have the following structure:

A_HOD_B_NFW_C_1Gpc_z0.50_D_E.npz

where

• A: cosmology with the same naming convention as Quijote products (fiducial,Om_p,Om_m,. . . )

• B: HOD set of parameters. ‘fid’ is the fiducial set, and the rest of parameters are named as in previous section,
using ‘_m’ and ‘_p’ to indicate steps.

• C: ID of HOD realization (from 0 to 4)

• D: RSD direction (1:x, 2:y, 3:z)

• E: ID of run

Example: Mnu_p_HOD_fid_NFW_sample0_1Gpc_z0.50_RSD3_run0.npz

For power spectrum and bispectrum measurements, files have an additional string ps_sancho and bisp_sancho,
respectively, at the beginning of the file name, and the file format is .dat.

25.4 Metadata

To access relevant metadata of each catalog, a simple code metadata.py is available at the parent folder of the Sancho
suite. Usage:

python metadata.py --cat_file "catalog_file.npz"

The code will output a JSON file with metadata listing cosmology, simulation , HOD and measurements specifications.

25.5 How to read catalogs

After download, the catalogs can be used in Python with the following script:

import numpy as np
filename = 'filename.npz'
cat = np.load(filename)
pos = cat['pos'] # shape: (N_galaxies, 3) --> X,Y,Z position of each galaxy in␣
→˓Mpc/h
vel = cat['vel'] # shape: (N_galaxies, 3) --> Vx, Vy, Vz velocity of the galaxy␣
→˓in km/s
gtype = cat['gtype'] # shape: scalar --> Type of galaxy, central: 1, satellite: 0

25.6 Power spectrum and Bispectrum

We measure the galaxy redshift power spectrum using the public code PBI4. We use a fourth-order density interpolation
and interlacing scheme described in Sefusatti et al. Bins have width of ∆𝑘 = 2𝑘𝑓 , where 𝑘𝑓 = 0.006ℎ/𝑀𝑝𝑐 is the
fundamental frequency of the box, and are computed up to 𝑘max = 0.3ℎ/𝑀𝑝𝑐.

The structure of the Power spectrum files is:

𝑘 | 𝑘avg | 𝑃0(𝑘) | 𝑃2(𝑘) | 𝑃4(𝑘) | 𝑁modes
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where 𝑘avg is the value of 𝑘 inside a bin averaged over the bin, in units of ℎ/𝑀𝑝𝑐. 𝑃0, 𝑃2 and 𝑃4 are the monopole,
quadrupole and hexadecapole, respectively. The units of the power spectra are (Mpc/ℎ)3. On the third line of each file,
you can find two numbers, corresponding to the number of galaxies for this catalog, and the related Poisson shot-noise.

In python, the files can be read as

import numpy as np
filename = 'ps_sancho_fiducial_HOD_fid_NFW_sample0_1Gpc_z0.50_RSD1_run1.dat'
k, avgk, pk,avgP2, avgP4, Nmodes= np.loadtxt(filename, unpack=True)

To get shot-noise:

def getSN(filename):
f = open(filename)
fline = f.readline()
fline = f.readline()
fline = f.readline()
psn = float(fline.split(' ')[-1])
f.close()
return psn

Using the same binning, we also measure the bispectrum for each galaxy catalog, resulting in 1654 triangles up to
𝑘max = 0.3ℎ/Mpc.

The structure of the Bispectrum files are:

𝑘1/𝑘𝑓 | 𝑘2/𝑘𝑓 | 𝑘3/𝑘𝑓 | 𝑃 (𝑘1) | 𝑃 (𝑘2) | 𝑃 (𝑘3) | 𝐵(𝑘1, 𝑘2, 𝑘3) | 𝐵(𝑘1, 𝑘2, 𝑘3) + SN | 𝑁tr

where SN = 1/𝑛2 + (𝑃 (𝑘1) + 𝑃 (𝑘2) + 𝑃 (𝑘3))/𝑛 is the bispectrum Poisson shot-noise and 𝑁tr is the number of
triangles in a give triangle bin.

In python, the files can be read as

import numpy as np

k1, k2, k3, Pk1, Pk2, Pk3, B0, B0+BSN, N_tri= np.loadtxt(filename, unpack=True)

25.7 Team

The Sancho Suite of galaxy mock catalogs was developed in 2023 by:

• Matteo Biagetti (Area Science Park, Italy)

• Juan Calles (PUCV, Chile)

• Jacky Yip (UW–Madison, USA)

• Emilio Bellini (IFPU, Italy)

If you use data from Sancho, please cite the Yip, Biagetti, Cole, Bellini, Calles, Shiu (2023).
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GIGANTES VOIDS

Gigantes is a collection of void catalogs created by running VIDE on top of Quijote data. It is a massive dataset aimed
at investigated the properties and information content of the underdense regions of the cosmic web. We refer the reader
to the Gigantes website for details on the data.

The video below shows examples of the Gigantes voids together with the positions of the galaxies used to identified
them. Credit: Wang et al. 2022.
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VOID CATALOGS

Beside Gigantes, Quijote also contain catalogs of voids identified using a spherical-overdensity algorithm (check this
website for details). The catalogs are stored as hdf5 files and they contain the following blocks:

• pos: the positions of the void centers in Mpc/h

• radius: the sizes of the voids in in Mpc/h

• VSF: the void size function

• VSF_Rbins: the radii bins of the void size function

• parameters: the values of the void finder parameters used to generate the void catalogue

In python, the files can be read as

import h5py

f = h5py.File('/home/fvillaescusa/Quijote/Voids/fiducial/0/void_catalogue_m_z=0.hdf5', 'r
→˓')
pos = f['pos'][:] #void center positions in Mpc/h
radius = f['radius'][:] #void radii in Mpc/h
VSF = f['VSF'][:] #VSF (#voids/dR/Volume)
VSF_Rbins = f['VSF_Rbins'][:] #VSF radii in Mpc/h
parameters = f['parameters'][:] #parameters used to run the void finder
f.close()
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POWER SPECTRA

28.1 Linear power spectra

The different folders contain both the CAMB parameter files and the matter power spectrum at z=0. In some cases
transfer functions and power spectra for neutrinos, CDM, baryons, and CDM+baryons are also present. The format of
the power spectrum files is

• k | P(k)

where the units of k and P(k) are comoving h/Mpc and (Mpc/h)^3, respectively. For the fiducial, Om_p, Om_m, Ob_p,
Ob_m, Ob2_p, Ob2_m, h_p, h_m, ns_p, ns_m, s8_p, s8_m, LC_p, LC_m, EQ_p, EQ_m, OR_LSS_p, OR_LSS_m, OR_LSS_p,
OR_LSS_m the name of the matter power spectrum files at z=0 is CAMB_matterpow_0.dat. For Mnu_p, Mnu_pp, and
Mnu_ppp the files are called instead XeV_Pm_rescaled_z0.0000.txt, where X = 0.1(Mnu_p), 0.2(Mnu_pp) and
0.4(Mnu_ppp). For the latin_hypercube simulations, the files are named Pk_mm_z=0.000.txt.

Note that the matter power spectra at 𝑧 = 0 are not normalized (this is because the normalization is performed in the
code that generates the initial conditions). The normalization factor is stored in the file Normfac.txt. One example
on how to obtain the correct normalized matter power spectrum for a given cosmology is this:

import numpy as np

f_Pk = '/home/fvillaescusa/Quijote/Linear_Pk/ns_p/CAMB_TABLES/CAMB_matterpow_0.dat'
f_norm = '/home/fvillaescusa/Quijote/Linear_Pk/ns_p/Normfac.txt'

k, Pk = np.loadtxt(f_Pk, unpack=True)
Normfac = np.loadtxt(f_norm)

Pk_norm = Pk*Normfac

Caution: For the primordial non-Gaussianity simulations, LC_p, LC_m, EQ_p, EQ_m, OR_LSS_p, OR_LSS_m,
OR_LSS_p, OR_LSS_m, the linear power spectra files contain the Gaussian linear matter power spectrum from
CAMB. The code that generates the initial conditions will take this Gaussian power spectrum and generate the
non-Gaussian initial conditions.
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28.2 Non-linear power spectra

The format of the power spectra are:

• k | P(k) for power spectra in real-space

• k | P0(k) | P2(k) | P4(k) for power spectra in redshift-space

where P0(k), P2(k) and P4(k) are the monopole, quadrupole and hexadecapole, respectively. The units of k are h/Mpc,
while for the power spectra are (Mpc/h)^3.

In redshift-space there are three different files for each realization/redshift. These have been computed by placing the
redshift-space distortions along the three different axes.

In python, the files can be read as

import numpy as np

k, Pk = np.loadtxt('/home/fvillaescusa/Quijote/Pk/matter/fiducial/3/Pk_m_z=0.txt',␣
→˓unpack=True)
k, Pk0, Pk2, Pk4 = np.loadtxt('/home/fvillaescusa/Quijote/Pk/matter/fiducial/3/Pk_m_RS1_
→˓z=0.txt', unpack=True)

28.3 Marked power spectra

The files whose name starts with

• Mk_ contain marked power spectra M(k) evaluated at wavenumber k

• Xk_ contain the cross spectra between marked and standard density field X(k) evaluated at wavenumber k

The unit of k is h/Mpc, while the one of M(k) and X(k) is (Mpc/h)^3.

Files with measurements performed in the fiducial cosmology have name

• Mk_fiducial0-4999_. . . .hdf5

• Xk_fiducial0-4999_. . . .hdf5

where the first numbers (in the above case 0-4999) indicate the realizations saved in the file, and the dots specify the
marked model considered.

The remaining files contain measurements performed in the other cosmologies and from 500 realization per cosmology.
Their name is

• Mk_fTH_. . . .hdf5

• Xk_fTH_. . . .hdf5

Also in this case the dots specify the marked model considered.

In python, the files can be read as

import numpy as np

f = h5py.File(FILENAME, 'r')
k = f['k'][:]
# Fiducial cosmology
Mk = f['i'][:]

(continues on next page)
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(continued from previous page)

# Massive neutrino cosmologies
Mk = f['cosmo/i_suffix'][:]
# Other cosmologies
Mk = f['cosmo/i'][:]

where i is the number of the realization, cosmo is the wanted cosmology and suffix can be

• ‘m’ for the total matter field

• ‘cb’ for the cold dar matter plus baryons

In order to see the name of each cosmology type

print(list(f.keys()))

28.3. Marked power spectra 107
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BISPECTRA

The format of the individual bispectra files are:

• k1/kf | k2/kf | k3/kf | P0(k1) | P0(k2) | P0(k3) | B0(k1,k2,k3) | Q(k1,k2,k3) | B_SN(k1,k2,k3) | counts

where k1, k2, k3 specify the length of the triangle sides, P0(k) is the power spectrum monopole, B0(k1,k2,k3) is
the bispectrum monopole, Q(k1,k2,k3) is the reduced bipsectrum, B_SN is the bispectrum shot noise correction, and
counts is the number of triangles in the bin. B0 is already shot-noise corrected. The header specifies kf, the fundamental
mode, and Nhalo, the number of halos.

The individual bispectra files can be read in python as follows,

import numpy as np

k1, k2, k3, p0k1, p0k2, p0k3, b123, q123, b_sn, cnts = np.loadtxt(FILENAME, skiprows=1,␣
→˓unpack=True, usecols=range(10))

# read header to get Nhalo
hdr = open(FILENAME).readline().rstrip()
Nhalo = int(hdr.split('Nhalo=')[-1])

Alternatively, sets of bispectra files for a specific redshift and cosmology can easily be accessed

import h5py

fbk = h5py.File(FILENAME, 'r')
k1 = fbk['k1'][...]
k2 = fbk['k2'][...]
k3 = fbk['k3'][...]
p0k1 = fbk['p0k1'][...]
p0k2 = fbk['p0k2'][...]
p0k3 = fbk['p0k3'][...]
b123 = fbk['b123'][...]
q123 = fbk['q123'][...]
b_sn = fbk['b_sn'][...]
cnts = fbk['counts'][...] # triange counts
Nhalos = fbk['Nhalos'][...] # number of halos
files = fbk['files'][...] # names of individual files.
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CORRELATION FUNCTIONS

The format of the correlation functions are:

• R | xi(R) for correlation functions in real-space

• R | xi0(R) | xi2(R) | xi4(R) for correlation functions in redshift-space

where xi0(R), xi2(R) and xi4(R) are the monopole, quadrupole and hexadecapole, respectively. The units of R are
Mpc/h, while the different xi are dimensionless.

In redshift-space there are three different files for each realization/redshift. These have been computed by placing the
redshift-space distortions along the three different axes.

In python, the files can be read as

import numpy as np

R, xi = np.loadtxt('/home/fvillaescusa/Quijote/CF/matter/fiducial/0/CF_m_1024_z=0.txt',␣
→˓unpack=True)
R, xi0, xi2, xi4 = np.loadtxt('/home/fvillaescusa/Quijote/CF/matter/fiducial/0/CF_m_RS0_
→˓1024_z=0.txt', unpack=True)
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PDFS

The format of the PDF files is:

• delta | pdf

where delta is the density contrast (rho/< rho > - 1).

In python, the files can be read as

import numpy as np

delta, pdf = np.loadtxt('/home/fvillaescusa/Quijote/PDF/matter/latin_hypercube/0/PDF_m_5.
→˓0_z=0.txt', unpack=True)
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DENSITY FIELDS

32.1 3D fields

The 3D density fields are located in the New York cluster (see Data access) under the 3D_cubes folder.

There are different folders for the different cosmologies. Inside each cosmology folder there are the folder containing
the data for the different realizations. Inside each of those folders the 3D density fields can be found with names as
df_m_X_Y_z=Z.npy, where X can be 64, 128, 256, or 512, and it represents the grid size of the cube. Y represents
the mass assignment scheme used to construct the density field, and can be something like CIC (cloud-in-cell) or PCS
(piece-wise spline). Z represents the redshift of the density field. For instance, df_m_256_CIC_z=0.npy contains the
3D density field on a grid with 2563 voxels constructed using the CIC mass-assignment scheme at 𝑧 = 0.

Note: These fields are constructed in real-space. Please reach us if you need them in redshift-space.

The files can be read simply as

import numpy as np

df = np.load('/home/fvillaescusa/Quijote/3D_cubes/Om_p/df_m_128_PCS_z=0.npy')

Warning: Density fields with a large number of voxels occupy a significant amount of disk space, so they may
not be available. However, constructing these fields is straightforward and it can be done directly on binder; thus,
there is no need to download and process the data. We have examples of how to create these density fields directly
on binder in Tutorials.

32.2 2D fields

2D fields (say images) can be constructed from the above 3D fields by taking a slice and projected it into 2D. For
instance:

import numpy as np

# read the 3D density field
df_3D = np.load('/home/fvillaescusa/Quijote/3D_cubes/Om_p/df_m_128_PCS_z=0.npy')

# take a slice of 4 voxels width, i.e. 1000/128*4 = 31.25 Mpc/h
(continues on next page)
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(continued from previous page)

# along z-direction and project into 2D by computing the mean value
df_2D = np.mean(df_3D[:,:,0:4], axis=2)
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LOGO

The below gif image has been created by linearly interpolating two images: 1) an image of the large-scale structure
from one Quijote simulation, and 2) an image created by using the DeepDream software on top of 1). The goal of the
animation is to emphasize and highlight regions of the cosmic web in a novel way.

The images below show Don Quijote riding his horse with the sky showing the large-scale structure of the Universe
from its traditional version (top-right) to its machine learning version (bottom-left).
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LICENSE

MIT License

Copyright (c) 2019 Francisco Villaescusa-Navarro

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

119



Quijote simulations, Release 0.1

120 Chapter 34. License



CHAPTER

THIRTYFIVE

FAQ

35.1 I am having problems reading the snapshots. What should I do?

Note that the snapshots have been compressed to reduce the storage needs. To read them, you need to install the
hdf5plugin with, e.g. python -m pip install hdf5plugin.

If you are using python, you need to load that library as:

import h5py
import hdf5plugin

Note that if you are reading the snapshots with Pylians you dont need to do anything else. However, keep in mind that
you may need to update Pylians to the latest version with python -m pip install --upgrade Pylians.

If you are using a non-python software (e.g. using running Rockstar in a snapshot or running a simulation from the
initial conditions using Gadget) you need to set HDF5_PLUGIN_PATH environment variable to make use of the HDF5
compression filters. The path can be obtained as:

python -c "import hdf5plugin; print(hdf5plugin.PLUGIN_PATH)"

and therefore, one should set in a terminal:

export HDF5_PLUGIN_PATH=$(python -c "import hdf5plugin; print(hdf5plugin.PLUGIN_PATH)")

After doing this, the code can be run as normal. For further details check this. If you experience problems with this
please reach out to us at villaescusa.francisco@gmail.com or lgarrison@flatironinstitute.org.

35.2 The documentation says that there are 15,000 realizations for the
fiducial cosmology, but I can only find 8,000. Where is the rest?

The 15,000 realizations of the fiducial model are split among the New York and San Diego Cluster. The New York
cluster contains the first 8,000 while the rest is in the San Diego cluster. Check Data access for details.
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35.3 How many latin-hypercubes are there?

Currently, there are 4 latin-hypercubes, each of them having 2,000 simulations:

• Three of them only vary Ωm, Ωb, ℎ, 𝑛s, 𝜎8.

• One of them vary Ωm, Ωb, ℎ, 𝑛s, 𝜎8, 𝑀𝜈 , 𝑤.
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HELP

For problems, questions and general help you can reach us at villaescusa.francisco@gmail.com
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